
MA, LI, LI, WANG, KIM: DOWNSIZENET 1

Task Generalizable Spatial and Texture
Aware Image Downsizing Network
(Supplemental material)

Lin Ma1

malin_u@126.com

Weiming Li1

weiming.li@samsung.com

Hongsheng Li2

hsli@ee.cuhk.edu.hk

Qiang Wang1

qiang.w@samsung.com

Ji-Yeon Kim3

jiyeon31.kim@samsung.com

1 Samsung Research China - Beijing
(SRC-B),
Beijing, China

2 Chinese University of Hong Kong,
Hong Kong, China

3 Samsung Advanced Institute of
Technology,
Suwon, South Korea

In this material, we first give the details of the proposed DownsizeNet module (Section
1), and then give the details of the implementation on each pipeline (Section 2). We also
discuss the relationship between the proposed DownsizeNet and feature map downsizing
(Section 3). In Section 4, we discuss the model generalization. In Section 5, we show the
results at each milestone of FCN. Finally, we show the downsized samples of RefineDet and
FCN (Section 5).

1 The details of the proposed DownsizeNet interpolation
method

We propose a new CNN based interpolation method named DownsizeNet which focuses on
image downsizing at the image pre-processing stage. Our proposed module is concise and
easy to implement. We give the implementation details here.

Besides 2 ∼ 4 convolution layers, and sigmoid layer, there are two special layers, the
pooling and the combination (interpolation) layer. For the floating type pooling layer, given
a pixel Q on low resolution feature map and its projected pixel Q′ on high resolution feature
map (Fig. 1), we just select the feature vector v′ at P1, and take v′ as the feature vector of Q.
The projection is the same as bilinear interpolation. Thus, this pooling operation is easy to
implement. Here, the P1 is the top left pixel. The vector v′ contains the texture around Q′.

For the combination layer, it is similar to the bilinear interpolation. For each pixel Q on
the low resolution image, given the four neighbor pixels on the high resolution image and
the four corresponding interpolation coefficients, we just need to normalize the interpolation
parameters with sum to 1 constraint, and then compute weighted sum as Equation (1) shows.

c© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 MA, LI, LI, WANG, KIM: DOWNSIZENET

P1 P2

P3 P4

Q’

Feature 
vector

Feature map

H

W

(a) (b)

Figure 1: The floating type pooling. (a) The corresponding pixels on high resolution
feature map about the given pixel Q from low resolution feature map. (b) The feature vector
at the pixel.

In another part, we can replace the last sigmoid layer in the coefficient inference subnetwork
with softmax, then the sum to 1 operation can be removed in the combination layer.

Thus, the proposed DownsizeNet is easy to implement. Also it can be inserted after the
original image conveniently. The users only need to define the size of the low resolution
image.

2 The experimental settings for the 7 pipelines

As for the limited and busy GPU resources, the experiments are not done on the same kinds
of GPUs. But we guarantee that for each pipeline, the Bilinear and ours used the same
kinds of and same number of GPUs. Also, we guarantee that Bilinear and ours use the same
parameter values for the model training and inference. Our experiments are performed based
on the source codes of the authors or the widely used source codes in github. The links of the
source codes are given in the main manuscript. Next, we present the specific implementation
details for each pipeline.

For generality purpose, we use 3 convolutions and 16 channels before the floating pooling
layer for each task and these hyper-parameter values are the same if not denoted specifically.
That is, the performance of each task is not optimized. We can expect better performance
with tuned hyper-parameters.

RefineDet. We use 4 K80 GPUs. For convenient upscaling of arbitrary resolution, we
remove the transfer module which needs deconvolution layer. The training parameter values
are the same as the source code.

CenterNet. We use 1 P40 GPU. Pretrained model is not used. The image is first warped
to 300×300, and then resized to 160×160 with DownsizeNet. We use 5 convolution layers
before pooling. The batch size is 20. The model is trained for 140 epochs, and the learning
rate milestones are defined as [90, 120] and decay rate is 0.1.

LightHead. We use 1 P40 GPU. We define the batch size as 32. The original code
defines max epochs as 40, while we use 80 here. We define the learning rate milestones as
[60,] and decay rate is 0.1. We also keep the image ratio (height/width) fixed, and define



MA, LI, LI, WANG, KIM: DOWNSIZENET 3

Table 1: The mAP of Bilinear and ours on LightHead for epoch 70 and 80.
Epoch Bilinear Ours

70 50.0 50.3
80 50.0 50.5

Table 2: The mAP of Bilinear and ours on DETR at four milestones.
Epoch Bilinear Ours

1 6.2 6.6
150 15.7 15.9
175 16.0 16.2
200 16.1 16.3

[height,width]× scale as the new height and width. We find that the mAP for Bilinear and
Ours have been steady until epoch 80 (Table 1).

DETR. We use 2 V100 GPU. We found that when the image was resized to very small
resolution, the training cannot converge very well. Thus, we just use the model trained
on larger image resolution as pretrained model (https://dl.fbaipublicfiles.com/detr/detr-r50-
e632da11.pth). The pretrained model is downloaded from the github. We define the batch
size as 4. We define the max epoch as 200, and set the learning rate milestones as [100,]
and decay rate as 0.1. We found that after 175 epochs, the performance became steady for
both Bilinear and Ours. Besides, ours consistently outperforms Bilinear at each milestone as
Table 2 shows.

FCN. We use 1 K80 GPU, and use 4 convolution layers before pooling. And we use
implementation of voc-fcn16s. The original FCN has no data augmentation. We found data
augmentation was important for our method. Thus, we add random cropping in data pre-
processing. Let h and w be the original height and width, we define,
rand_thres = min(min(h,w)/3,20),
y0 = rand(0, rand_thres)
x0 = rand(0, rand_thres)
y1 = rand(h-rand_thres, h-2)
x1 = rand(w-rand_thres, w-2)
Then the new image is cropped from the region [y0:y1, x0:x1], rand() represents selecting a
random integer within the given range. We define the max iteration number as 400K.

DeepLabv3+. We use 1 V100 GPU. We define the max epochs as 200 as suggested by
the source code. We define the batch size as 16.

SPNet. We use 1 V100 GPU. We define the max epochs as 180 as suggested by the
source code. We define the batch size as 4. To deal with small resolution, we define the
pool_size for sel f .strip_pool1 and sel f .strip_pool2 as (10, 6) (original is (20, 12)) in the
file ’spnet.py’.

3 Relationship between the proposed DownsizeNet and
feature map downsizing

Generally, the feature map downsizing uses strided convolution, max pooling, etc., to down-
size the resolution for higher receptive field or higher speed. However, these downsizing



4 MA, LI, LI, WANG, KIM: DOWNSIZENET

methods lead to integer times downsizing, for example from 200×200 to 100×100, but not
155×155 to 100×100. Thus, these methods cannot be used directly to deal with image
downsizing in image preprocessing. In contrast, the proposed DownsizeNet can deal with
arbitrary ratio image downsizing effectively with a specifically designed floating pooling
layer.

Bilinear interpolation is also used in feature map resizing in some methods. For example,
SPNet [3] and DeepLabv3+ [1] uses bilinear interpolation to upscale the feature map to
original size to obtain segmentation result. However, the bilinear interpolation operation is
the same as used in dealing with image. And the bilinear interpolation only uses relative
distance to infer the interpolation coefficients and cannot adapt to the texture or semantic
feature variation. Different from the bilinear interpolation method, our interpolation method
not only involves the relative distance information but also adapt to the texture variation
in interpolating the neighbor image pixels. Besides, our interpolation method can also be
used to deal with feature maps. That is, we can replace the bilinear interpolation with our
proposed interpolation method to resize the feature maps. But in this paper, we only focus
on image downsizing at the image pre-processing stage.

4 Generalization ability of model pretrained on different
tasks

In this section, we further discuss the generalization ability of DownsizeNet. We compare the
generalization of DownsizeNet and traditional pooling based convolution. With the same set-
ting as in Section 5.3 in the main manuscript (first paragraph), for comparison, we designed
a sub-network which only has convolution layers. The comparison sub-network (denoted
as Conv-Down) has three convolution layers as our sub-network (before pooling), while the
last convolution layer output a 3 channel feature map which is directly used in following
CNN task. The convolution filter numbers are all set to be 16 as ours. The last convolu-
tion layer has stride 2 in Conv-Down. The two downsizing sub-network both are trained
on DeepLabv3+, and then used on LightHead. On LightHead, we keep the weights of the
pretrained Downsizing module and the VGG backbone fixed, and only train the rest part of
the network. From Fig. 2, we can see that ours obtains much better result than Conv-Down
at all epochs. When the backbone needs to be fixed and only the head part is trained, our
DownsizeNet can still obtain good performance. The image is resized from 300×300 to
150×150 in this test.

We have tested the generalization ability of our model in Section 5.3 in the main manuscrip-
t. We made two experiments using DeepLabv3+ and LightHead. One test is that we pretrain
the DownsizeNet module on DeepLabv3+ and then test on LightHead (denoted as Test A),
and the other is that we pretrain the DownsizeNet module on LightHead and then test on
DeepLabv3+ (denoted as Test B). We found that in Test A we obtained better result than
bilinear interpolation, while in Test B we obtained worse result than bilinear interpolation.
We analyze that this difference is mainly caused by the model discrimination ability. Gener-
ally, the feature extracted by classification are more discriminative than the feature extracted
by regression, and then obtains better generalization ability. For example, in visual tracking
the discriminative model [2] separating the foreground samples from background can be
considered as classification problem. The discriminative model is relatively more robust to
deal with various challenges in new conditions in experiments. That is, the discriminative

Citation
Citation
{Hou, Zhang, Cheng, and Feng} 2020

Citation
Citation
{Chen, Zhu, Papandreou, Schroff, and Adam} 2018

Citation
Citation
{Hare, Saffari, and Torr} 2011



MA, LI, LI, WANG, KIM: DOWNSIZENET 5

0 10 20 30 40 50 60 70 80 90
epoch

0

10

20

30

40

50

60

m
AP

2.9

36.1

13.7

46.5

19.8

46.3

21.1

46.8

22.9

46.8

24.8

47.6

24.6

47.1

26.1

47.8

25.8

47.6

Conv-Down
Ours

Figure 2: Test on LightHead about the influences of pretrained downsizing model on
Pascal VOC2007. The downsizing modules are pretrained on DeepLabv3+ with 200 epochs.
Results at epoch 1 and 10× k,k = 1,2, ...,8 are given.

model is relatively more generalizable. In contrast, the generative model [5] representing
the foreground sample distributions can be considered as a regression problem. When the
old generative model cannot represent the sample distribution in new conditions or the fore-
ground and background are similar, the tracking tend to fail. That is, the generative model
relatively has lower generalization ability than discriminative model. In this paper, DeepLab-
v3+ is a classification method and can obtain more discriminative feature. And LightHead
contains both classification (for bounding box label) and regression (for bounding box re-
gression). We analyze that the discriminative ability is reduced by the regression task to
some extents.

The bounding box regression in detection needs to regress the height, width and center
of the box. There can be such conditions where objects of different classes have the same
bounding box. In this condition, the regression process just aims to project the samples
to the same low dimensional distribution (4D vector here). That is, it does not need to
obtain discriminative object representation for different object categories. When the model
is used to other tasks, these features of different categories are still entangled with each
other. In contrast, segmentation model is more discriminative as a classification task. From
this aspect, we can see that the features obtained by classification are more representative of
the sample while the features obtained by regression tend to lose the identity of the sample.
Thus, we consider that the model pretrained by classification task have higher generalization
ability.

5 Results at each milestone of FCN
In Fig. 3, we show the results at each milestone of FCN [4] for 400K iterations. From the
figure, we can see that at the four milestones, our method all obtains better performance
and the gaps between Bilinear and ours are relatively steady. After 300K iterations, the
performances for both Bilinear and ours have little gains any more.

6 The downsized samples of RefineDet and FCN
We also show some samples of downsized images in RefineDet and FCN (Fig. 4). From
the figure, we can see that the difference mainly exists around the object boundary area

Citation
Citation
{Ross, Lim, Lin, and Yang} 2008

Citation
Citation
{Long, Shelhamer, and Darrell} 2015



6 MA, LI, LI, WANG, KIM: DOWNSIZENET

100 150 200 250 300 350 400 450
iteration (k)

24.5

25.0

25.5

26.0

26.5

27.0

m
ea

n 
IU

24.7

25.2
25.0

25.4

25.8

26.1

25.8

26.3

Bilinear
Ours

Figure 3: The results at each milestone of FCN.

where more image information exists. As the downsized images according to DownsizeNet
and bilinear interpolation are both real images and visually similar, it is not easy to see the
advantage of DownsizeNet visually from the figure. As our main aim is to optimize the
following CNN task performance, the advantage of DownsizeNet is mainly exhibited by the
accuracy of CNN tasks. And according to the experimental results on seven pipelines and
four datasets, we can see that the CNN task accuracies are improved consistently using the
low resolution images downsized by our method.

References
[1] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig

Adam. Encoder-decoder with atrous separable convolution for semantic image segmen-
tation. ECCV, 2018.

[2] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels.
ICCV, 2011.

[3] Qibin Hou, Li Zhang, Ming-Ming Cheng, and Jiashi Feng. Strip pooling: Rethinking s-
patial pooling for scene parsing. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[4] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. CVPR, 2015.

[5] D. A. Ross, J. Lim, R.S. Lin, and M.H. Yang. Incremental learning for robust visual
tracking. IJCV, 77(1):125–141, 2008.



MA, LI, LI, WANG, KIM: DOWNSIZENET 7

bilinear ours Difference between ours 
and bilinear image

bilinear ours Difference between ours 
and bilinear image

Figure 4: The output images interpolated with the proposed DownsizeNet. The top
two rows are based on RefineDet, and the last row is based on FCN. The downsized images
with bilinear interpolation and the proposed DownsizeNet and the difference between them
are presented. The difference image representing the absolute difference between the two
images. In the difference image, the min value is assigned 0 and the max value is assigned
255. All other values are projected to the range (0, 255) linearly.


