
JEONG ET AL.: ZERO-SHOT VISUAL COMMONSENSE IMMORALITY 1

Supplementary Material:
Zero-shot Visual Commonsense
Immorality Prediction

Yujin Jeong1

eugene6923@korea.ac.kr

Seongbeom Park1

psb485@korea.ac.kr

Suhong Moon2

suhong.moon@berkeley.edu

Jinkyu Kim1

jinkyukim@korea.ac.kr

1 Computer Science and Engineering
Korea University
Seoul 02841, Korea

2 Electrical Engineering and Computer
Sciences
University of California, Berkeley
CA 94720, USA

A Implementation Details

Training Details. We implement our Commonsense Immorality predictor upon architecture
by Hendrycks et al. [6]. We use an MLP for this classifier, which consists of Dropout-Linear-
Tanh-Dropout-Projection layers. Our model is trained end-to-end using AdamW [9] as an
optimizer with the learning rate shown in Table 1. The whole model is trained for 100 epochs
on 4 NVIDIA GeForce RTX 3090 GPUs, distributing inputs evenly per GPU. We utilize
the ETHICS commonsense morality dataset to train such a model. Other hyperparameters
(e.g., learning rate, batch size, epochs, weight decaying parameter, AdamW epsilon, and a
parameter for dropout layers) used to train our models are summarized in Table 1.

CLIP Backbone Input size Learning rate Batch size Epochs Weight decay AdamW epsilon Dropout

ViT-B/32 512 0.002 64 100 0.01 1e-8 0.5

ViT-B/16 512 0.002 64 100 0.01 1e-10 0.5

ViT-L/14 768 0.001 64 100 0.01 1e-8 0.5

Table 1: Details of Hyperparameters for training our morality classifier.

Video Preprocessing. Real Life Violence Situations dataset [10] contains 2000 violence
and non-violence videos collected from YouTube. Each clip is approximately 5-seconds
long, and we extract a single 75-percentile frame from sorted video frames, where the most
important scenes are commonly observed.

Labeling Moral vs. Immoral Images. Socio-Moral Image dataset [3] provides an average
moral rate voted by multiple human judges, and we convert it into moral (1 for images where
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the moral rate is above 2.4) and immoral (0 for images where the moral rate is below 2.4).
Sexual Intent Detection dataset [5] provides three label types: (i) sexually provocative im-
ages, (ii) images with implicit or hidden sexual intents, and (iii) images without any explicit
sexual intentions. In our experiment, we only use (i) as immoral images. Similarly, we use
sexual and porn images as immoral for the NSFW [1] dataset, whereas drawings and neutral
images are moral.

B Dataset Details

Additional Examples of Existing Datasets. In Figure 1, we provide additional examples of
four different datasets: Socio-Moral Image dataset (SMID, [3]), Sexual Intent Detection [5],
Real Life Violence Situations [10], and NSFW [1].

Figure 1: Examples randomly sampled from four different datasets: Socio-Moral Image
dataset (SMID, [3]), Sexual Intent Detection [5], Real Life Violence Situations [10], and
NSFW [1]. Some images are blurred as they contain highly immoral (or sexually provoca-
tive) content.

Examples of ETHICS Commonsense Morality Dataset. ETHICS Commonsense Morality
Dataset, which we used to train our model, provides two types of text prompt: (1) long and
(2) short sentences. In Table 2, we provide statistics of the ETHICS dataset. Further, we
provide examples of such texts in Figure 2.
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Number of Examples Avg. Length
(in words)

Train Test Test (Hard)

Total 13,910 3,885 3,964 224

Long sentences 7,249 1,776 2,260 417

Short sentences 6,661 2,109 1,704 15.9

Table 2: Number of examples in terms of data splits. As the ETHICS dataset provides two
types of text prompts (long and short sentences), we also provide statistics for both cases.
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Figure 2: Examples of moral and immoral scenarios from the ETHICS commonsense moral-
ity dataset.
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Additional Examples of our Visual Commonsense Immorality. In Figure 3, we provide
additional random examples of our Visual Commonsense Immorality dataset along with dif-
ferent query keywords.

Figure 3: All keywords and corresponding (randomly sampled) images from our Visual
Commonsense Immorality Dataset.
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C Additional Experiments

Textual Commonsense Immorality Classification Performance. In Table 3, we provide
scores of textual commonsense immorality classification for a variant of our model with
different NLP models and different CLIP backbones.

NLP Model Test Acc. (%) Test (Hard) Acc. (%) AUC (%)

Word Averaging 62.9 44.0 -

GPT-3 (few-shot) [2] 73.3 66.0 -

BERT-base [4] 86.5 48.7 -

BERT-large [4] 88.5 51.1 58.0

RoBERTa-large [8] 90.4 63.4 69.0

ALBERT-xxlarge [7] 85.1 59.0 56.0

CLIP Backbone Test Acc. (%) Test (Hard) Acc. (%) AUC

ViT-B/32 74.4 49.2 54.4

ViT-B/16 75.0 47.4 53.5

ViT-L/14 79.2 49.7 59.2

Table 3: Textual commonsense immorality prediction accuracy (in %) for variants of CLIP-
based backbones and uni-modal NLP-based models.

Details of Human Study. In Figure, we provide a pie chart to show the diversity of partici-
pants in our human study. Overall, 170 participants with different ethical backgrounds were
recruited through Amazon Mechanical Turk.

Figure 4: We ask an additional question “which of the following best describes you?” to see
the ethical diversity of participants in our human study.

Effect of Text Input Length. The CLIP-based text encoder was pre-trained with external
data, with texts of length 77 in max. This can pose a potential issue if text inputs have
more than 77 words. To see its effect, we further experiment with datasets of different
lengths (short vs. long). As shown in Table 4, we observe a degradation when we train
only with short sentences from the ETHICS dataset (compare 1st and 2nd rows), which
might be due to these short sentences often conveying a short description of actions (e.g.,
“I trashed his essay”). In contrast, long sentences (that were collected from Reddit) provide
better contextual cues to judge immorality (compare short vs. long sentences in Figure 2).
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Additionally, we experiment with long sentences as input but reverted to see the effect of
cutting sentences by 77 words for a CLIP-based text encoder. As shown in Table 4 (compare
2nd vs. 3rd rows), we observe a slight degradation, which indicates that the beginning of
sentences conveys better contexts to determine immorality.

Input Test Acc. (%) Test (Hard) Acc. (%) AUC (%)

Short sentences 70.5 57.1 49.5

Long sentences 79.4 42.1 57.5

Long sentences (reverted) 73.8 41.9 55.3

Table 4: Textual commonsense immorality prediction accuracy (in %) with different subsets
of input texts.
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