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Background Agnostic Framework

• We propose an automatic benchmark dataset generation pipeline that 
can be applied to any CSLR dataset (Scene-PHOENIX).

• We propose a new training scheme for CSLR, including Background 
Randomization (BR) and Disentangling Auto-Encoder (DAE). 

• We experimentally show that our approach effectively improves the 
robustness to background shifts while maintaining the performance.

Sign Language Recognition

Our Contributions

Motivation: 
• Most existing Continuous Sign Language Recognition (CSLR) 

benchmarks are filmed in studios with a monochromatic background.

• Observation: Even the recent state-of-the art models suffer 
significant performance degradation on random background videos

Quantitative Results

DAE not only improves the performance on Scene-PHOENIX, 
but also achieves better performances on PHOENIX-2014

Comprehensive comparison of gloss predictions between VAC and Ours

VAC-Oracle:  VAC model trained on all LSUN [6] background matted videos.

Grad-CAM comparison of the signer features and background features

Qualitative Results

Grad-CAM [5] activation maps

Scene-PHOENIX dataset generation

Background randomization for training

Disentangling Auto-Encoder
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