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Abstract

Modern object detection and instance segmentation networks stumble when pick-
ing out humans in crowded or highly occluded scenes. Yet, these are often scenar-
ios where we require our detectors to work well. Many works have approached this
problem with model-centric improvements. While they have been shown to work to
some extent, these supervised methods still need sufficient relevant examples (i.e. oc-
cluded humans) during training for the improvements to be maximised. In our work,
we propose a simple yet effective data-centric approach, Occlusion Copy & Paste, to
introduce occluded examples to models during training — we tailor the general copy
& paste augmentation approach to tackle the difficult problem of same-class occlusion.
It improves instance segmentation performance on occluded scenarios for “free” just
by leveraging on existing large-scale datasets, without additional data or manual la-
belling needed. In a principled study, we show whether various proposed add-ons to
the copy & paste augmentation indeed contribute to better performance. Our Occlu-
sion Copy & Paste augmentation is easily interoperable with any models: by simply
applying it to a recent generic instance segmentation model without explicit model ar-
chitectural design to tackle occlusion, we achieve state-of-the-art instance segmentation
performance on the very challenging OCHuman dataset. Source code is available at
https://github.com/levan92/occlusion-copy-paste.

1 Introduction

There is nothing more interesting to humans, than humans. Object-level visual recognition
tasks like object detection and segmentation of the person class have overarching appli-
cations from pedestrian detection for autonomous driving, to worker safety monitoring in
factories and construction sites, to retail analytics in the commercial space. The fact that
humans are everywhere necessitates that we need to get very good at picking out humans.
However, current state-of-the-art (SOTA) object detection and instance segmentation models

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

https://github.com/levan92/occlusion-copy-paste


2 LING, HUANG, HUR: OCCLUSION COPY & PASTE

(a) (b)
Figure 1: (a) Instance segmentation predictions of Mask R-CNN on occluded human cases
versus one trained with our Occlusion Copy & Paste (base images from OCHuman [34]);
(b) Example of image augmented with our Occlusion Copy & Paste approach (base image
from MS COCO dataset [24])

often fail when people are occluded and in crowded scenes [22, 30, 34]. The issue is exac-
erbated in instance segmentation when we need to delineate multiple neighboring instances
of the same class occluding each other. The current model performance on such cases is
illustrated on the left of Figure 1(a). Our work looks at this harder problem of same-class
occlusion in instance segmentation, and more specifically, of the person class, the most com-
mon class of instances in the MS COCO dataset [24]. Moreover, as discussed above, there
are ubiquitous applications for recognizing humans.

Methods to tackle most problems in deep learning can be categorized into model-centric
or data-centric approaches — most of the time, people found most success using a com-
bination of both. In the space of occluded instance recognition, good model-centric ap-
proaches have been proposed to tackle occlusions [22, 23, 30, 34]. However, most of these
are supervised, inherently assuming availability of relevant labelled data to learn from, i.e.,
labelled images with instance occlusions. While it has been very promising in the self-/semi-
supervised space [5, 21, 29], the current state of deep learning is still very much label-hungry.
Nothing improves a model more than simply having many relevant labelled data.

It is commonplace for detection & segmentation models to be trained (or pre-trained)
on open-source large-scale datasets[10, 24]. However, such datasets comprise of common
scenes from daily life and difficult scenes with occlusions are few and far between. This
possibly contributes to the poor performance of modern models on occluded scenes. A
naïve way to go about this is to collect and label a sufficiently large dataset of occluded
people. Unfortunately, segmentation tasks are notoriously hard to label for. It took workers
an average of 79.2 seconds per instance to annotate the segmentation masks in the MS COCO
dataset [24] — a total of 2,500,000 instances took 55,000 man-hours. The effort will be
prohibitively large to collect and annotate a large-scale dataset of occluded humans, given
that the labelling effort would be even harder due to occluded & intertwined instances.

In light of these limitations, we propose the novel use of instance-level copy & paste
as a form of augmentation to directly induce occlusion during training. Figure 1(b) shows
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an example training image after applying our augmentation. With our proposed Occlusion
Copy & Paste, this straightforward approach significantly improves instance segmentation
performance on highly occluded human scenarios (example results on right of Figure 1(a)),
all whilst training on existing datasets without additional data collection or labelling. For the
first time, to the best of our knowledge, copy & paste is used as an augmentation to directly
tackle the issue of occluded instance segmentation. We studied the necessity of realism in
augmented images and found that most of the time, it is actually counter-productive. We also
experimented and explored the space of using copy & paste to refine its effectiveness as an
augmentation technique to tackle occluded instance segmentation. Our approach is comple-
mentary to, and should be coupled with model-centric approaches in tackling occlusions to
achieve the best performance.

To summarise, our key contributions are as follows: (1) We propose the novel use of
instance-level copy & paste augmentation to tackle the problem of occluded person instance
segmentation; (2) We conducted a principled study on the efficacy of our various add-ons
that tailors our copy & paste augmentation for occluded instance segmentation and impor-
tantly show that sometimes, variety is favoured over realism; (3) By simply applying our
Occlusion Copy & Paste with a recent instance segmentation model [6], without any explicit
model architectural designs to tackle occlusions, we achieve SOTA instance segmentation
performance on the very challenging OCHuman benchmark [34]; (4) We also clarify vari-
ous labelling and evaluation fairness issues around OCHuman and propose a fully-labelled
subset for future works to benchmark upon: OCHumanFL.

2 Related Work
Object Detection & Instance Segmentation. Object detection and instance segmentation
are closely linked in concept and research works. Modern object detection is anchored upon
the seminal R-CNN work [14] in 2014 and its succeeding Fast & Faster R-CNN [13, 28]
which formed the core framework for two-stage object detection for nearly the decade to
come. Two-stage models first propose regions of interest, then refine bounding boxes and
classify in the second stage. For instance segmentation, Mask R-CNN [19] was a natu-
ral extension of Faster R-CNN [28], extending a mask head parallel to the existing box
and classification heads. This completely shifted how instance segmentation is approached,
bringing forth an “instance-first” strategy, which proved to be highly effective despite being
conceptually simple. Most recently, Mask2Former [6] was introduced as a universal model
architecture for segmentation tasks, which broke the SOTA in not just instance but across
semantic and panoptic segmentation as well. Using a DETR [3] style transformer-based de-
coder with masked attention and learnable object queries allowed for efficient training while
exploiting the pair-wise self-attention interaction in the transformer layers. The goal of our
work is to prove the efficacy of copy & paste augmentation in tackling the issue of occlusions
in instance segmentation. Therefore, we chose Mask R-CNN [19] as our baseline model dur-
ing experimentation due to its simplicity and efficiency. We eventually extend our approach
to Mask2Former [6], demonstrating SOTA results on occluded human benchmarks.

Tackling Occlusions. Occlusion is not a new problem — many works over the years have
attempted to tackle it from a model-centric perspective, from occlusion in object detection
[30, 33] to segmentation like OCFusion [23] and BCNet [22]. More relevant to our work,
[34] introduced a new benchmark for occluded person instance segmentation, the Occluded
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Human (OCHuman) dataset. This challenging benchmark is especially useful, plugging the
gap on instance segmentation datasets containing heavily occluded humans. In the same
work, they propose to tackle occlusion via Pose2Seg, where instead of bounding boxes, hu-
man poses are used as proposals to instance segmentation and used for feature alignment.
Following, PoSeg [35] extends it by integrating top-down and bottom-up cues, predicting
human pose and instance segmentation mask in a multi-task manner. Similarly, they bench-
mark their approach on the OCHuman dataset. Most works have tackled occlusion with
supervised model-centric approaches. Complementing that, our work approaches the occlu-
sion issue from a data-centric direction by providing relevant labelled data.

Copy & Paste as Augmentation. Image augmentation regularizes training by introducing
greater variety of training inputs. More complex forms of augmentation bring in multiple
images, like mixup [32], CutMix [31] or mosaic augmentation of Yolov4 [2]. These ideas
run along the same vein as the concept of copy & pasting instances onto another image. This
copy & paste concept is simple and over the years, several works have tried to formalize the
idea, proposing variations for different uses. One of the earlier works [9] used it for instance
detection: from a separate bank of segmented instances, they pasted instances randomly onto
backgrounds, framed as a synthetic data approach instead of as an augmentation technique.
They particularly found that their model was over-fitting to pasting artefacts at the edges
and implements random blending for the model to look beyond these artefacts and blending
styles. A subsequent work by [8] argues that random pasting does not extend to object
detection, proposing an additional contextual model to determine if an instance is of suitable
class for pasting into an image. Then, InstaBoost [11] eliminates the extra contextual model,
making use of original instances within an image and jitter them around their locality instead.

Most recently, [12] primes Simple Copy-Paste (SCP) for improving instance segmenta-
tion performance. This work surprisingly rebuts the various claims from the previous works
[8, 9]—they claim that blending is not beneficial and that pasting with context is not needed,
random pasting works just as well. Similarly in our experiments, we show that such realism
enhancers are actually counter-productive most of the time. SCP views copy & paste as a
way to generally increase diversity of data points during training, simply taking a pair of im-
ages and directly overlaying instances from one image over the other without modifications.
In contrast, we use copy & paste as a means to directly induce occlusions and at the same
time retain “free” ground-truth labels via Occlusion Copy & Paste. We introduce more di-
rection and stochasticity in pasting—copy & paste is used as image augmentation to directly
tackle the issue of occluded persons instance segmentation.

3 Approach
The concept behind copy & paste is straightforward: we start from our Basic Copy & Paste
pipeline, then introduce some add-ons and designs that improves efficiency, stochasticity
and enhance realism. We show in experiments later that realism enhancements are generally
counter-productive. The eventual Occlusion Copy & Paste does not contain most of the
realism enhancements, but do contain the add-ons that improve efficiency and stochasticity.

3.1 Basic Copy & Paste
Figure 2 illustrates our Basic Copy & Paste pipeline for each data iteration during training:
For every training image, a dynamic basket of images is sampled from the dataset. Then,
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Figure 2: Overview of our Basic Copy & Paste augmentation pipeline.

a random subset of instances from this basket is pasted onto the current image at random
locations. Sub-regions of existing instances that overlapped with pasted instances may no
longer be visible, so the associated ground-truth mask regions are removed. Some instance
may be too occluded to meaningfully enforce predictions: if remaining visible regions is
too small, we will remove that instance entirely. Instances are pasted in sequentially, which
facilitates the possibility of occlusions amongst pasted instances as well. This runs in real-
time in each training iteration, giving rise to novel views & occlusion scenarios in every
step, the combinatorial sum of all instances and images provides relevant yet huge variety of
training examples to the task of occluded instance segmentation.

The augmentation pipeline has the following hyper-parameters introduced:

• PCP: Overall probability for Copy & Paste augmentation, sampled every iteration,
ensures it does not happen all the time, as it is considered a strong augmentation.

• Nbasket : Number of images to sample into a basket. Larger number may improve
variety of instances to be pasted, but increases pre-processing time. On the other
hand, smaller Nbasket may preserve more context information where people of a certain
appearance may tend to appear together in the same image (e.g., a skiing scene).

• Rpaste: Range of number of sampled instances to be pasted — the actual number of
pasted instances each iteration is uniformly sampled within this range. An optimal
number is chosen, demonstrated in section 4.4.1 later on. We need enough occlusion
to happen, yet not too many as they may over-clutter the image, which may be detri-
mental to the learning. Nbasket will need to increase as Rpaste increases such that there
are enough instances in the basket to sample from.

Already, in order to address occlusions, our basic implementation differs from SCP [12]: our
instances are stochastically selected from a dynamic basket and pasted at random locations,
while SCP rigidly takes instances from one image and directly overlays onto another at fixed
original positions.

Citation
Citation
{Ghiasi, Cui, Srinivas, Qian, Lin, Cubuk, Le, and Zoph} 2021



6 LING, HUANG, HUR: OCCLUSION COPY & PASTE

3.2 Occlusion Copy & Paste
Various improvements are then made on top of our Basic Copy & Paste pipeline to improve
efficiency and introduce more variety in augmentation, further tailoring it to tackle occlusion.
More details on these add-ons can be found in the supplementary material.

Figure 3: Example of targeted past-
ing and augmented instance pasting.
Pasted instances sampled within im-
age to show contrast after instance
augmentation

Targeted Pasting. Targeted pasting works to in-
crease efficiency of the copy & paste augmentation
to more directly induce occlusion. In target pasting,
the pasting location of each copied instance is ran-
domly chosen within the locality of a random exist-
ing instance in the image (previously, each instance
is randomly pasted within the image bounds).

Augmented Instance Pasting. Augmented in-
stance pasting works to introduce more variety in
pasting instances during training. Augmentation on
instances consist of a mixture of random color jitter-
ing (saturation, contrast, brightness and sharpness)
and geometric jittering (scaling and rotation).

3.3 Realism Enhancements
As with all kinds of synthetic approaches, a natural question to ask is how realistic are
the synthesized images for our model to learn from and generalize to real-world testing.
An image’s realism depends on various factors: In synthesis via graphics rendering, photo
realism is the main factor people care about. However, the very advantage of the copy &
paste approach is we get around photo realism by simply re-using parts of other real images.
On the other hand, semantic realism is relatively more lacking, as pasted instances often look
out of place due to the random pasting. We briefly describe some realism enhancements
implemented for experimentation. It is not proven that we need perfect realism to train a
good model — we will show in later sections that most of these realism enhancements may
actually be counter-productive. Furthermore, in single class setting like this, there is an even
lesser need to learn inter-class contextual dependencies (classes that naturally occur more
often with each other). Please refer to supplementary for more visualised examples.

Minimum size filter. We may end up with pasted instances that are too small in the aug-
mented image. Sometimes, tiny instances are annotated and can be predicted by model
because of contextual information, for e.g., if an individual person is picked out from the
audience stand of a baseball game and pasted elsewhere, it may not be reasonable for any
model nor humans to detect the instance if it is too small. We exclude tiny instances for
pasting thresholded on the ratio of equalized side length (

√
area) of instance to target image.

Scale-aware Pasting. To improve semantic realism, in scale-aware pasting, we obtain the
size distribution of the bounding boxes of original instances within the destination image,
and subsequently sample a scale from this distribution for each instance to be pasted in. This
way, pasted instances will look more natural and aligned with context in the scene (for e.g.,
wide shot or close-up shot of a scene, see supplementary).

Better quality masks. We experiment if better quality masks for copy & paste lead to
better training. We tap on the LVIS [16] dataset, which uses MS COCO [24] images but
provides better quality mask labels. However, as LVIS is labelled in a federated style, it
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contains less labelled instances in less images: 15,482 person instances in 2,225 images,
compared to 262,465 in 64,115 images in COCO.

Blending. In [9], blending aims to remove boundary artifacts after pasting. Similarly, we
implemented Gaussian blurring that operates on the pasting masks. The size and standard
deviation of the Gaussian kernel controls how much “blend” we introduce. These hyper-
parameters can be randomized at every paste during training (known as “random blending”).

4 Experiments

4.1 Dataset and Evaluation Protocol
Datasets. In all experiments, we train on the person class subset of the MS COCO dataset
[24], with 262,465 human instances in 64,115 images. Our copy & paste augmentation taps
on the same training set. Only for the experiment for better quality masks (as described in
section 3.3), we additionally utilize LVIS [16] mask annotations. To evaluate performance
of instance segmentation under highly occluded scenarios, we test on the OCHuman [34]
validation (4,291 instances in 2,500 images) & test set (3,819 instances in 2,231 images).

Fully Labelled OCHuman. It is found that the OCHuman benchmark is not exhaustively
annotated: there are some human instances that do not have mask labels. This led to repro-
ducibility and evaluation fairness issues which are further discussed in our supplementary
material. For fairer evaluation, we provide a subset of OCHuman which only contains im-
ages that are fully labelled (especially important for reproduction of Pose2Seg results in
Table 4). This subset, OCHumanFL has 2,240 instances in 1,113 images (in val) and 1,923
instances in 951 images (in test). We report our main results on both sets: OCHuman and
OCHumanFL. We hope OCHumanFL can re-anchor a new starting point for future instance
segmentation works to benchmark upon for fair evaluation and comparison.

Evaluation. We report the segmentation mean average precision (mAP), standard evalua-
tion protocol for instance segmentation [24], equivalent to AP in a one-class setting.

4.2 Implementation details
For all experiments (less section 4.5), we use the same model for consistency: Mask R-CNN
[19] with ResNet-50 [18] backbone & Feature Pyramid Network [25], considered a strong
baseline for instance segmentation and strikes a good balance between accuracy & training
speed / GPU memory. [12, 20] have shown that when training with strong augmentations,
initializing with pre-trained ImageNet [7] weights might actually hurt performance. We no-
tice the same from our initial experiments, and therefore we train our whole model from
scratch: convolutional weights are initialized with Kaiming initialization [17] and batch nor-
malization trainable parameters are initialized to 1. We train on single machines with 4
NVIDIA V100 GPUs each, with Synchronized Batch Normalization [27]. We mostly follow
training hyper-parameters in [1]: an initial learning rate of 0.0125 at a batch size of 8 (scaled
according to the linear scaling rule [15]), momentum of 0.9 and weight decay of 4× 10−5.
We train for 75 epochs (longer due to training from scratch) with learning rate decay by a fac-
tor of 0.1 on the 66th & 72nd epochs. We use MMDetection [4] to perform our experiments,
and the pre-trained models which we compare against are also from MMDetection.
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4.3 Baseline results
Firstly, we show on Table 1 that just training with our Basic Copy & Paste augmentation,
significant improvements over the pre-trained model & baseline vanilla trained model are
evident. With the same training settings as the baseline vanilla training, the model trained
additionally with Basic Copy & Paste outperforms across the board. Additionally, APperson
on COCO (mini 5k) validation set is also reported here to show that in getting better at
picking out occluded people, we do not sacrifice on the accuracy in normal cases.

Training Approach OCHuman OCHumanFL COCO
AP val AP test AP val AP test AP val

person

Pre-trained from [4] 14.9 14.9 24.5 24.9 47.5
Baseline vanilla training 16.5 16.6 27.0 27.4 48.7
+ Basic Copy & Paste (ours) 18.6 17.8 29.3 28.5 49.2

Table 1: Baseline comparisons with Basic Copy & Paste, tested on OCHuman

Further improvements are made after the ablation study in section 4.4 and the final results
are reported in section 4.5.

4.4 Ablation study

[1,3] [4,6] [7,10] [11,15] [16,20]
Number of Pasted Instances

17

18

19

20

A
P

Set

Val

Test

Figure 4: Effect of number of pasted instances
on AP, tested on OCHuman

In this section, we step through experiments
in our ablation study to further tailor our
eventual Occlusion Copy & Paste for the
best performance.

4.4.1 Number of pasted instances

We study how number of pasted instances
affect the performance of the trained model.
The results are plotted out on Figure 4. When there are too little pasted instances, there is
little chance of occlusion occurring which contributes to poorer performance. On the other
hand, when there are too many pasted instances, performance drops possibly due to over-
cluttering affecting learning. Optimal Rpaste is [4,6] for Basic Copy & Paste.

copy & paste add-ons AP val AP test

Basic Copy & Paste 18.6 17.8
Minimum Pasting Size 18.8 18.5
Minimum Pasting Size + Scale Aware 18.2 -0.6 18.2 -0.3
Minimum Pasting Size + Better Quality Mask 18.4 -0.4 18.0 -0.5
Minimum Pasting Size + Blend (Fixed) 18.6 -0.2 17.9 -0.6
Minimum Pasting Size + Blend (Random) 19.0 +0.2 18.4 -0.1

Table 2: Ablation on realism enhancers, tested on OCHuman

4.4.2 Realism enhancement experiments

Next, we experimented on the effects of the various realism enhancements described in sec-
tion 3.3. As seen on Table 2, imposing minimum pasting size led to a slight improvement —
not pasting tiny instances which are not meaningful for the model to predict and learn from,
does help the model to learn slightly better. However, beyond that, we see that in general,
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the rest of the realism enhancements actually caused performance to drop. The argument
against realism enhancements is the trade-off with the scope of augmentation variability.
Implementing realism means imposing a more restrictive scope on how varied pasting can
be: Scale-aware pasting restricts variability on sizes of pasted instances. Using better qual-
ity masks may actually help, but in this case, using LVIS for better quality masks means
fewer human instances to copy from. Variability of pasted instances is more important than
quality of instances. Random blending does perform slightly better on the validation set,
but the slight improvement does not justify the increase of about 20% in training time due
to significant computation in blending operations. Our findings that realism enhancements
are generally counter-productive corroborates with [12]. Moving on, we only preserve the
minimum pasting size control for Occlusion Copy & Paste.

4.4.3 Efficacy of targeted pasting & instance augmentation

One potential downside of Basic Copy & Paste was that training time increases with a greater
number of pasted instance due to the sequential pasting of instances. This downside is mini-
mized with targeted pasting (described in section 3.2). As seen on Table 3, targeted pasting
improves the efficiency of pasting such that we achieve the very good performance at low
Rpaste of [1,3]. In fact, at higher pasting number with targeted pasting, performance im-
provements are not as obvious and even starts to drop, possibly due to over-cluttering around
a local region. Targeted pasting allows us to achieve high performance with less pasted in-
stances and consequentially, shorter training duration. We also observe that augmented past-
ing (described in section 3.2) further pushes the performance on OCHuman. Once again,
this demonstrates that more variability in augmentation helps with performance.

copy & paste add-ons AP val AP test

Basic C&P, Rpaste = [1,10] 18.6 17.8
+ Targeted 18.6 +0.0 18.2 +0.4
Basic C&P, Rpaste = [1,3] 17.9 17.5
+ Targeted 19.1 +1.2 18.0 +0.5
+ Targeted & Augm. Paste 19.2 +1.3 18.4 +0.9
+ Targeted, Augm. Paste & Min. Size 19.5 +1.6 18.6 +1.1

Table 3: Ablation on Targeted & Augmented Paste, tested on OCHuman

Our eventual Occlusion Copy & Paste (OC&P) is made out of the Basic Copy & Paste with
minimum pasting size control imposed, targeted pasting at a Rpaste of [1,3] and augmented
instance pasting.

4.5 Pushing the performance & SOTA
On Table 4, we show that OC&P is easily interoperable with any model: besides Mask
R-CNN (previously in sections 4.3 and 4.4), we trained OC&P with Pose2Seg [34] and
showed a significant ∼10% improvement on OCHumanFL. Finally, we applied OC&P on
Mask2Former (M2F) [6], one of vastly different model architecture (see section 2), and push
the SOTA performance on instance segmentation task on the OCHuman benchmark. We use
M2F with Swin-S [26] backbone, follow their original training schemes and fine-tune on
our COCO training set — this includes Large Scale Jittering (LSJ) augmentation, which is a
strong augmentation first introduced in [12], which does random image resizing at a larger
range of [0.1,2.0], followed by fixed size cropping. This demonstrates that OC&P is also
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additive to other strong augmentation methods. More details on our M2F experiments can
be found in supplementary. As seen on the last row of Table 4, our eventual model trained
with OC&P outperforms PoSeg [35], the current SOTA on OCHuman. The performance on
OCHumanFL doubles that of Pose2Seg [34] as well. The model architectures of Pose2Seg
& PoSeg were specially designed to tackle occlusions, and ExPoSeg even utilises a high-
performance external pose estimation model. M2F is a generic instance segmentation model,
but is able to outperform both models just by training with OC&P — this shows the potential
of such data-centric approaches. For completeness of comparison, we also include results
from our training runs with Simple Copy-Paste [12] (details in section 2) instead of OC&P
and show that OC&P still outperforms the simpler augmentation method.

Model External
Pose Model

Modelled for
Occlusion

OCHuman OCHumanFL

AP val AP test AP val AP test

Pose2Seg§ [34] - - 22.8+ 22.9+

+ Occlusion C&P (ours) ✓ ✓ - - 25.3+ 25.1+

Mask R-CNN§ [19]
✗ ✗

14.9 14.9 24.5 24.9
Mask R-CNN† 16.5 16.6 27.0 27.4
+ Occlusion C&P (ours) 19.5 18.6 30.6 29.9
PoSeg (JoPoSeg) [35] ✗ ✓ 25.8⋆ 26.4⋆ - -
PoSeg (ExPoSeg) ✓ 26.4⋆ 26.8⋆ - -
Mask2Former§ [6] 25.9 25.4 43.2 44.7
Mask2Former† 26.7 26.3 45.2 46.4
+ Simple Copy-Paste [12] 28.0 27.7 48.9 50.2
+ Occlusion C&P (ours)

✗ ✗
28.9 28.3 49.3 50.6

Table 4: OC&P improves AP across the board and achieves SOTA performance on OCHuman.
| §: pre-trained models | †: models from our baseline vanilla training

⋆ Directly referenced from paper as no code is published
+ An exhaustively-labelled OCHumanFL is important for fair evaluation in Pose2Seg. Evaluating on

OCHumanFL allow us to closely reproduce results reported in [34].

5 Conclusion
All in all, we propose a novel use of copy & paste augmentation to tackle the difficult
problem of same-class occlusion in instance segmentation. From Basic Copy & Paste, we
experimented with various add-ons: we found realism enhancements are mostly counter-
productive, but targeted pasting & augmented pasting improves performance through in-
creased efficiency and variability in augmentation. The eventual Occlusion Copy & Paste
augmentation takes these elements and we show that it is interoperable with SOTA instance
segmentation models, significantly improving performance on occluded scenarios for “free”,
without any additional data or labels. Even without explicit architectural design to tackle oc-
clusions, we outperform the SOTA on OCHuman by simply applying our Occlusion Copy
& Paste on a generic SOTA instance segmentation model. This demonstrates the potential
of data-centric approaches. A key benefit of our approach is that it is easily applied with any
models or other model-centric improvements. Given the speed at which the deep learning
field moves, it is to everyone’s advantage to have approaches that are highly interoperable
with every other aspect of training. We leave as future work to integrate this with model-
centric improvements to effectively solve occluded person instance segmentation.
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