B VID-Trans-RelD: Enhanced Video
PDurham Transformers for Person Re-identification

University
Aishah Alsehaim and Toby P. Breckon, Durham University, UK

A
%

Video Patch Part Feature Local Part Video Features
B @ @ e

VAT (Layer n)

r

[ VIT (Layer 0 to n-1) | ; A
L aeo ealures

Motivation

Extracting a robust feature representation that is invariant to the
challenges of pose and illumination variation across multiple camera
viewpoints is a key challenge within video person Re-ID.

Method

We use Vision Transformer (ViT) in place of ‘traditional’ CNN via: m (m mm @ﬁ@ﬁ m

. an enhanced ViT based architecture for video person Re-ID,

incorporating both global video-level and local patch-based features. Patehos b Proiecti
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Video Patch Part Feature (VPPF)

* Each video frame is split into n equal size overlapped patches. T T ] I
‘ * Alearnable positional embedding is prepending to each patch to EJ |-;ﬂ \L | T, |

preserve spatial information.
This local branch extracts fine-grained features using our novel

* Given the multi-camera nature of video person Re-ID additional
learnable camera embedding is added to represent the camera Temporal Clip Shift and Shuffle (TCSS) and Video Patch Part
Feature (VPPF) modules.
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https://github.com/AishahAADU/VID-Trans-RelD/

.' ”g M %H.E 5 aggregated to video-level features using spatiotemporal attention.
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