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Abstract
In recent years, the performance of novel view synthesis using perspective images

has dramatically improved with the advent of neural radiance fields (NeRF). This study
proposes two novel techniques that effectively build NeRF for 360° omnidirectional im-
ages. Due to the characteristics of a 360° image of ERP format that has spatial distortion
in their high latitude regions and a 360° wide viewing angle, NeRF’s general ray sam-
pling strategy is ineffective. Hence, the view synthesis accuracy of NeRF is limited and
learning is not efficient. We propose two non-uniform ray sampling schemes for NeRF
to suit 360° images – distortion-aware ray sampling and content-aware ray sampling. We
created an evaluation dataset Synth360 using Replica and SceneCity models of indoor
and outdoor scenes, respectively. In experiments, we show that our proposal success-
fully builds 360° image NeRF in terms of both accuracy and efficiency. The proposal
is widely applicable to advanced variants of NeRF. DietNeRF, AugNeRF, and NeRF++
combined with the proposed techniques further improve the performance. Moreover, we
show that our proposed method enhances the quality of real-world scenes in 360° images.
Synth360: https://drive.google.com/drive/folders/1suL9B7DO2no21ggiIHkH3JF3OecasQLb.

1 Introduction
Synthesizing a view from other views is a long-standing problem in computer vision and
graphics. With recent emerging interest in virtual and augmented reality, this technology
is expected to support applications such as virtual tours and immersive 3-D games, where
immersion in large, unbounded photorealistic virtual space is possible. In such applications,
taking images of an entire scene with a camera of narrow field-of-view (FoV) is prohibitively
tedious; therefore, view synthesis with 360° cameras of wide FoV is an attractive option.

Recently, neural radiance fields (NeRF) [28] has brought significant progress in photo-
realistic novel view synthesis. NeRF is an implicit MLP-based neural network trained on
calibrated multi-view images, which maps 5-D vectors (3-D coordinates and 2-D viewing
direction) to opacity and color values of the 3-D coordinates viewed from that direction.
Using the NeRF model, the image pixels are independently synthesized by accumulating
opacity and color values along the camera ray in continuous 3-D space.
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Figure 1: Näively sampling rays from wide FoV images causes biased, insufficient train-
ing of the NeRF [28] model due to the distorted sphere-to-plane projection and large less-
textured regions. Our non-uniform sampling strategies directly tackle this problem.

Although NeRF [28] and its extensions (e.g., [16, 35, 37]) have attracted significant
attention, to the best of our knowledge, no attempt has been made to train NeRF on images
from 360° cameras where information at each viewpoint is stored in a single 360° image
format (e.g., Equirectangular projection (ERP)).

More concretely, the näive NeRF was implemented to uniformly sample rays from each
pixel in all training images with equal probability. This is based on the assumption that rays
passing through each pixel have equal coverage in 3D space and each pixel in the image
has equal information. However, as projecting a spherical 360° information of a view to
a planar image inevitably introduces projective distortion, the uniform sampling on image
coordinates biases the distribution of camera rays in 3-D space. For instance, as shown
in Fig. 1, high-latitude areas (i.e., above and below the camera) in an ERP image occupy
a much smaller 3-D space compared to low-latitude areas (front and side of the camera).
Hence, a strategy is needed to take into consideration the projective distortion of sample
rays for training NeRF model on 360° images. In addition, a wide FoV image is likely
to contain large low-frequency textures (e.g., ceiling and floor, sky and ground) that need
smaller samples than high-frequency textures; therefore, näively sampling rays from all the
pixels is quite redundant.

The main contribution of this research is to raise these issues involved in applying NeRF
to 360° images and to present the first effective ideas for addressing them. Concretely, we
propose two non-uniform ray sampling strategies for efficiently training NeRF-based models
on 360° images in the most standardized ERP format. First, we propose the distortion-aware
ray sampling, which normalizes the sampling probability based on the per-pixel scaling fac-
tor of the area from the two-dimensional (2-D) plane to the sphere (i.e., the ratio of areas of
the spherical surface to those of the corresponding ERP image). Intuitively, pixels at higher
latitudes in ERP coordinates have smaller coverage in 3-D space; therefore, the lower sam-
pling probability is allocated. Second, we propose the content-aware ray sampling, which
adaptively updates the sampling probability based on pixel-wise reconstruction loss for each
training step. Intuitively, the low-frequency textures such as sky and ground easily converge;
therefore, we would lower the sampling probability of those regions as the training proceeds.
Our method is surprisingly easy to implement and can therefore be easily incorporated into
various NeRF-like models.

Our method is evaluated on both synthetic and real data. To evaluate the proposed method
under ideal conditions, we create a synthetic evaluation benchmark of NeRF on 360 im-
ages using a physically-based renderer (i.e., Blender [1]) with Replica Dataset [19] and
SceneCity [3] Blender add-on. In our experiments, we will demonstrate that the proposed
non-uniform sampling strategies are applicable to both the näive NeRF [28] and its variants
such as DietNeRF [20], AugNeRF [11], and NeRF++ [43].
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Since most consumer 360° cameras store information in an equirectangular projection
(ERP) image, we assume that an image is represented in this format as in previous works
(e.g., [23, 41, 42]). However, it is straightforward to transfer our ideas to other spherical for-
mats, such as cubic projection, which also causes distortions by sphere-to-plane projection.

2 Related Works
Novel View Synthesis: Before NeRF [28] emerged, discrete representations of scenes have
been used in the novel view synthesis task. Several approaches with discrete representations
of scenes employ point clouds [4], voxels [33], meshes [38], plane sweep volumes [14,
15], or multi-plane images [27, 34]. While effective, they have a disadvantage of limited
resolution due to the large memory consumption.

Conversely, NeRF [28], a learning-based method based on continuous implicit represen-
tation, has achieved high-resolution rendering by taking advantage of volume rendering with
continuous neural radiance fields. To improve the performance of NeRF, several studies have
combined multiple representations (e.g., point clouds [13], voxels [26], and multi-plane im-
ages [21, 40]). In addition, NeRF opens up many new kinds of research using implicit neural
representation [10, 24, 30, 36].

However, there have been few studies on novel view synthesis using multi-view 360° im-
ages [17, 22, 25]. To the best of our knowledge, this work is the first attempt to handle the
projective distortion to apply NeRF for calibrated multi-view 360° images. Problems that
arise when NeRF is applied to 360° images in ERP format include projective distortion, the
presence of low-frequency texture regions resulting from wide FoV, and unbounded scenes.
This study addresses two issues of projective distortion and the presence of regions of low-
frequency texture.

The näive NeRF assumes that the entire scene can be packed into a bounded volume, so
is problematic for unbounded scenes. NeRF++ [43] and mip-NeRF 360 [8] improved the
performance of unbounded scenes in perspective images. NeRF++ [43] separates the scene
into foreground and background and parameterizes the background by inverted sphere pa-
rameterization. Mip-NeRF 360 [8] proposes a parameterization to handle unbounded scenes
under the conical frustum proposed in mip-NeRF [7], which is a NeRF variant that addresses
sampling and aliasing. As a result, the mean squared error is reduced by 54% compared to
mip-NeRF for unbounded scenes in perspective images. However, mip-NeRF 360 is not
suitable for images with large projective distortion, such as ERP format. As described by the
authors, this is because mip-NeRF assumes a small difference between the base and top radii
of the frustum [7]. Our proposed method does not solve the problem caused by this intra-
pixel distortion and therefore mip-NeRF 360 is not suitable. Our experiments show that
NeRF++ combined with our method makes possible more effective novel view synthesis of
360° images for unbounded scenes.

We should note that some previous works controlled the sampling probability of 3D
points along rays (e.g., TermiNeRF [31] and NeRF-ID [5]), however, our proposal is differ-
ent from them in that we control the pixel-wise sampling probability.

Spherical Novel View Synthesis: Spherical novel view synthesis is the task of synthesizing
a novel 360° view from a set of multi-view 360° images. In this field, multi-sphere images
(MSI)-based methods, which are spherical extensions of multi-plane images (MPI), are the
most commonly used representation [6, 9, 18]. MSI-based methods have a fast rendering
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time, but provide a discrete representation of the scene and have limited accuracy and large
memory consumption to represent large scenes. In contrast, NeRF-based methods have their
advantages in their accuracy and practical memory consumption with continuous neural rep-
resentations even though the large training/test time is still a big challenge. So far, there
have been very few attempts to apply NeRF-based models to 360° images. If any, OmniN-
eRF [17] handled more spherical information from a fisheye camera, and to the best of our
knowledge, there was no attempt to explicitly tackle challenges that arise when NeRF-based
models are trained from 360° information which is projected onto 2-D images.

Hard Example Mining: In the image understanding tasks such as image classification and
object detection, hard example mining is a bootstrapping technique to solve the imbalance
problem of training samples [12, 32]. In hard example mining, the sampling probability is
non-uniformly assigned according to its current loss for enhancing the neural network to
learn from harder and more important examples. Our content-aware ray sampling strategy
introduced the idea of hard example mining in training NeRF model.

3 Preliminaries
Given calibrated multi-view images, NeRF [28] learns implicit 3-D volumes of opacity σ and
color c of each 3-D coordinate by minimizing the pixel-wise discrepancy between the actual
observation and the volume rendering result. The opacity σ is a function of 3-D position,
independent of the viewing direction, and the color c is a function of both spatial position and
viewing direction. NeRF trains neural networks for both opacity and color volumes based on
the inverse volume rendering using regularly sampled 3-D points on rays r passing through
pixels with a ray origin o and direction d in each input image as r(t) = o+ td in the range
tn ≤ t ≤ t f . Specifically, we partition [tn, t f ] into N evenly-spaced bins and then draw one
sample ti(1 ≤ i ≤ N) uniformly at random from within each bin as

ti ∼ U
[

tn +
i−1

N
(t f − tn), tn +

i
N
(t f − tn)

]
. (1)

Using all samples along a ray, the color Ĉ(r) at a corresponding pixel is computed using the
volume rendering principle as

Ĉ(r) =
N

∑
i=1

Ti(1− exp(−σiδi))ci,where Ti = exp

(
−

i−1

∑
j=1

σ jδ j

)
, (2)

where δi = ti+1 − ti is the distance between adjacent samples. NeRF has two levels of coarse
and fine MLPs and learns for the loss function L, that is, the squared error between the color
Ĉc(r), Ĉ f (r) synthesized by each ray r ∈R in each batch and the ground truth color C(r).

L= ∑
r∈R

[∥∥∥Ĉc(r)−C(r)
∥∥∥2

2
+
∥∥∥Ĉ f (r)−C(r)

∥∥∥2

2

]
. (3)

4 Method
Basically, NeRF is trained on the batch-wise reconstruction loss where each batch contains
multiple rays whose sampling probability is uniform at all the pixels in all the images. How-
ever, as has already been stated, when NeRF model is trained on 360° images in ERP for-
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(a) two non-uniform sampling strategies

0 iterations 500 1,000

2,500 10,000 100,000
(b) transition in sampling probability

Figure 2: Ray sampling of the proposed method. The proposed method is divided into two
components: (1) distortion-aware ray sampling and (2) content-aware ray sampling.

mat, this uniform sampling strategy theoretically becomes problematic as the 3-D coverage
of each ray passing through each pixel is not uniform due to the projective distortion. In
addition, a wide FoV image basically contains large low-frequency texture regions such as
sky and ground, ceiling and floor, and it is wasteful to keep spending the same amount of
learning resources there as are spent on the high-textured areas. Therefore, we propose two
non-uniform ray sampling strategies that individually control the pixel-wise sampling prob-
ability considering the geometric distortion (i.e., distortion-aware ray sampling) and image
content (i.e., content-aware ray sampling).

Distortion-aware Ray Sampling: To reduce the sphere-to-plane projective distortion bias
by uniform sampling of rays for the inverse volume rendering in NeRF [28], we control
the sampling probability pixel-by-pixel considering the coverage of each pixel in 3-D space.
Concretely, we compute the area Sd where a pixel of an ERP image occupies the unit spher-
ical surface as

Sd =
∫

φ2

φ1

∫
θ2

θ1

cosθdθdφ

= (φ2 −φ1)(sinθ2 − sinθ1). (4)

Here θ ∈ [θ1,θ2] and φ ∈ [φ1,φ2] are latitude and longitude respectively, that bound each
pixel in the ERP coordinates. Simply speaking, the higher latitude regions have smaller 3-D
coverage and lower latitude regions have larger 3-D coverage. We calculate Sd for all pixels
in all training images and normalize all of the values so that they add up to one. This result is
used as the probability of sampling each pixel (Pd) during training as shown in Fig. 2-(a)-left.
Intuitively, the higher sampling probabilities are assigned to lower latitude regions as each
ray has to cover the larger space in 3-D.

Content-aware Ray Sampling: To avoid taking redundant samples from low-frequency
texture (texture-less) regions in a 360° image with wide FoV, we further control the sam-
pling probability so that the probability around the texture-less regions decreases. However,
if no samples were assigned to the low-frequency region at all, learning would not proceed in
that region; therefore, it is desirable to take samples from the entire image in the early stages
of learning, then samples gradually be concentrated in more challenging regions. Based on
this observation, we are inspired by the online hard example mining [12, 32], which is a
bootstrapping technique that adaptively samples examples in a non-uniform way depending
on the current loss of each example. We assume that the ℓ2 reconstruction loss around the
low-frequency texture regions decreases faster than that around the high-frequency texture
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regions; hence, we decrease the sampling probability at pixels with smaller reconstruction
loss at the last iteration. Concretely, we define Sc as a collection of pixel-wise inverse re-
construction loss at all pixels in all the training images that are uniformly initialized by one.
At each iteration, a batch of rays passing through m pixels (i.e., m = 2048 in our implemen-
tation) are stochastically sampled using the sampling probability at the current iteration and
only Sc values at sampled pixels are updated based on the reconstruction loss. Then, the
content-aware sampling probability (Pc) of each pixel is updated by normalizing Sc so that
they add up to one (See Fig. 2-(a)-right). In Fig. 2-(b), we illustrate how the content-aware
sampling probabilities are updated through iterations.

Sampling Strategy Details: We multiply and normalize the distortion-aware probabilities
(Pd) and content-aware probabilities (Pc) so that they sum up to one. At each training itera-
tion, we stochastically pick m pixels using this sampling probability, and a NeRF model is
trained on the rays that pass through those pixels. We perturb the center of rays within the
pixels to augment their coverage.

5 Results
To validate the effectiveness of our non-uniform ray sampling strategies, we implemented
our method on NeRF [28] and its variants (i.e., DietNeRF [20], AugNeRF [11], and NeRF++ [43]),
and trained each model on both synthetic and real datasets. To exclude the effects other than
different sampling strategies, only the minimal changes for the adaptation to ERP images
were made (i.e., a ray is defined on the spherical coordinates, rather than Cartesian coordi-
nates). All the models were trained on a single NVIDIA Tesla A100 machine with 2048 sam-
ples per iteration. We used the Adam optimizer with default hyperparameters (i.e., β1 =0.9,
β2 =0.999, and ε = 10−7) and a learning rate of 5× 10−4 which was linearly decayed so
that it became 5×10−5 at the 100k-th iteration. For each target scene, models were trained
during 100k iterations taking approximately 7∼8 hours. In all scenes, the ray’s near values
were set to 0. In synthetic scenes, the ray’s far values were set to reach the area excluding
the sky. In real-world scenes, sufficient far value to reach the point clouds was set based on
the OpenSfM camera position and point clouds.

5.1 Synth360 Dataset
It is known that the evaluation of NeRF-based models using real-world datasets is inevitably
affected by camera calibration errors by structure-from-motion (SfM) tools, which may neg-
atively affect the theoretical analysis [39]. Furthermore, a real 360° image often suffers from
stitching errors which destroy the precise geometric consistency. Thus, we firstly evaluated
our method on the ideal synthetic images. Since there was little synthetic dataset available
for novel-view synthesis with multiple 360° images, we synthesized 360° images in the ERP
format with Blender’s Cycles renderer [1] using highly photorealistic 3D scenes, Replica
Dataset [19], for indoor scenes and the city generator add-on for Blender, SceneCity [3], for
outdoor scenes. Using these resources, we randomly picked 8 indoor scenes from Replica
Dataset and generated 2 city scenes with SceneCity. For each indoor and outdoor scene,
we rendered images by placing 5 to 9 cameras uniformly for training images and 100 cam-
eras for test images whose resolutions are all 320× 640. Examples of rendered images are
illustrated in Fig. 3

Citation
Citation
{Mildenhall, Srinivasan, Tancik, Barron, Ramamoorthi, and Ng} 2020

Citation
Citation
{Jain, Tancik, and Abbeel} 2021

Citation
Citation
{Chen, Wang, Fan, and Wang} 2022

Citation
Citation
{Zhang, Riegler, Snavely, and Koltun} 2020

Citation
Citation
{Wang, Wu, Xie, Chen, and Prisacariu} 2021

Citation
Citation
{ble} 

Citation
Citation
{J.protect unhbox voidb@x protect penalty @M  {}Straub, Ma, Chen, Wijmans, Green, Engel, Mur-Artal, Ren, Verma, Clarkson, Yan, Budge, Yan, Pan, Yon, Zou, Leon, Carter, Briales, Gillingham, Mueggler, Pesqueira, Savva, Batra, Strasdat, Nardi, Goesele, Lovegrove, and Newcombe} 2019

Citation
Citation
{sce} 



OTONARI, IKEHATA, AIZAWA: SAMPLING STRATEGIES FOR NERF ON 360° IMAGES 7

Figure 3: Examples of synthesized scenes (i.e., 6 of 10 scenes) in Synth360 dataset.

Indoor scenes (from Replica Dataset [19]) Outdoor scenes (from SceneCity [3])

Figure 4: Effect of each sampling strategy. The proposed method is divided into two parts:
(1) distortion-aware ray sampling and (2) content-aware ray sampling. PSNR/SSIM were
calculated for the images at each test pose.

Replica Dataset [19] GT (cropped) NeRF [28]
5,000

iterations

NeRF [28]
100,000
iterations

NeRF + Ours
5,000

iterations

NeRF + Ours
100,000
iterations

SceneCity [3] GT (cropped) NeRF [28]
5,000

iterations

NeRF [28]
100,000
iterations

NeRF + Ours
5,000

iterations

NeRF + Ours
100,000
iterations

Figure 5: Qualitative comparison on Replica Dataset [19] and SceneCity [3].

5.2 Evaluation on Synth360

For evaluating the contribution of individual components, we firstly ablated each of our non-
uniform sampling strategies implemented upon the näive NeRF model [28]. PSNR/SSIM
curves during training are shown in Fig. 4. By comparing curves between the näive NeRF
model and that with both distortion-aware and content-aware sampling strategies, we ob-
serve the obvious performance improvement by our method on both indoor (Replica) and
outdoor (SceneCity) scenes; not only did our method improved the learning speed, but also
PSNR/SSIM at convergence. Fig. 5 illustrates the qualitative comparisons at 5,000-th iter-
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Table 1: Quantitative comparison using NeRF [28], DietNeRF [20], AugNeRF [11], and
NeRF++ [43] on Replica Dataset [19] and SceneCity [3]. The best is highlighted.

Replica Dataset [19] SceneCity [3]
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRF [28] 34.44 0.970 26.48 0.808
NeRF [28]+Ours 34.68 0.970 26.59 0.809
DietNeRF [20] 36.34 0.974 31.86 0.889

DietNeRF [20]+Ours 37.69 0.977 32.26 0.892
AugNeRF [11] 36.80 0.982 27.53 0.826

AugNeRF [11]+Ours 37.07 0.983 28.61 0.844
NeRF++ [43] 12.39 0.386 26.62 0.799

NeRF++ [43]+Ours 14.39 0.521 28.33 0.832

ation and 100,000-th iteration, which show obvious advantages of our method over näive
NeRF to recover details around the boundaries between walls and ceilings (Fig. 5-top) and
around the white centerline (Fig. 5-bottom). Looking at the results in Fig. 4 in more details,
we also observe that the content-aware sampling alone rather degraded the performance.
We further analyzed this failure case and found that the model trained based solely on the
content-aware sampling without the distortion-aware sampling had been overfitted to high-
frequency details at high-latitude regions which were severely distorted due to the projective
distortion. This result suggests that a proper consideration of the projective distortion is crit-
ical for NeRF on 360° images. In the supplementary material, we provide a deeper analysis
of how our distortion-aware sampling contributed to different latitude regions and how our
content-aware sampling contributed to a different amount of textures.

To validate that the benefit of our non-uniform sampling strategies is not limited to
the näive NeRF model, we applied our method to other NeRF-like models such as Diet-
NeRF [20], AugNeRF [11], and NeRF++ [43] with only changes about sampling strategies.1

A quantitative comparison of PSNR/SSIM at 100,000-th iteration is shown in Table 1. We
observe that our non-uniform sampling strategy consistently improved the performance of
DietNeRF, AugNeRF, and NeRF++. Please note that the reconstruction accuracy of NeRF++
is much lower than others because NeRF++ failed to properly decompose the foreground and
background on our Synth360 dataset. In the supplementary, we also visualize PSNR/SSIM
curves and rendered images for each method for further discussion.

5.3 Evaluation on Real 360° Images
We also evaluated our non-uniform sampling strategies on two real scenes; one is indoor
and the other is outdoor. We used a consumer 360° camera to capture each scene in the
ERP format and calibrated extrinsic parameters using OpenSfM [2]. A quantitative compar-
ison of PSNR/SSIM at 100,000-th iteration among ours (with both strategies), NeRF [28],
DietNeRF [20], AugNeRF [11] and NeRF++ [43] on these two scenes is shown in Table 2.
While PSNR/SSIM scores of real images are lower than those of synthetic ones as expected,
our proposed method also consistently improved the reconstruction quality. We illustrate the
qualitative comparison at 5,000-th iteration and 100,000-th iteration in Fig. 6.2 It is interest-
ing to see that our sampling strategies did not significantly improve both PSNR and SSIM

1More implementation details are presented in the supplementary.
2Due to the space limit, we only show the rendered images of NeRF and NeRF + Ours. Please refer to the

supplementary for other results.
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Table 2: Quantitative comparison using NeRF [28], DietNeRF [20], AugNeRF [11], and
NeRF++ [43] on our real-world indoor and outdoor scenes. The best is highlighted.

indoor scene outdoor scene
Method PSNR↑ SSIM↑ PSNR↑ SSIM↑

NeRF [28] 22.84 0.760 24.14 0.723
NeRF [28]+Ours 23.28 0.805 24.16 0.739
DietNeRF [20] 21.50 0.771 23.58 0.733

DietNeRF [20]+Ours 22.89 0.794 23.84 0.735
AugNeRF [11] 18.71 0.677 22.44 0.682

AugNeRF [11]+Ours 20.60 0.686 22.54 0.724
NeRF++ [43] 22.20 0.769 23.90 0.786

NeRF++ [43]+Ours 23.37 0.801 24.32 0.803

indoor scene GT (cropped) NeRF [28]
5,000

iterations

NeRF [28]
100,000
iterations

NeRF + Ours
5,000

iterations

NeRF + Ours
100,000
iterations

outdoor scene GT (cropped) NeRF [28]
5,000

iterations

NeRF [28]
100,000
iterations

NeRF + Ours
5,000

iterations

NeRF + Ours
100,000
iterations

Figure 6: Qualitative comparison on our real-world indoor and outdoor scenes.

scores from the näive NeRF, however, we can observe the clear advantages of our method
on the visual comparison. In 360° images with a wide field of view and many flat areas,
non-uniform sampling seemed to contribute to the visual quality of high-frequency regions
more than PSNR/SSIM scores.

6 Conclusion

In this work, we proposed two non-uniform ray sampling strategies for effectively training
NeRF-based models from 360° images specifically in the ERP format: distortion-aware ray
sampling and content-aware ray sampling. Based on our Synth360 dataset which rendered
synthetic indoor and outdoor scenes, we showed that the proposed method consistently im-
proved the training curves of näive NeRF and its variants. Because of its simplicity, the
proposed method is highly compatible with other efficient methods (e.g., [29]), and we be-
lieve that the most important contribution of this research is that it shows the importance
of non-uniform sampling of rays in distorted image representations, such as 360° images.
For future work, we should integrate our non-uniform sampling strategies into more diverse
variants of NeRF model (e.g., [10, 24, 30, 36]).
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