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Novel view synthesis for 360°images in ERP format with NeRF
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Qualitative comparison on Synth360

Synth360

(a) sample 2D pixels with equal probability to get 3D points along the ray
(b) feed 5D input into an MLP to produce a color and density
(c) use classical volume rendering techniques to accumulate those colors and densities

(d) minimize the squared error between the synthesized color and the ground truth color

Neural Radiance Fields (NeRF) [1]
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Problems with 360°image NeRF
Spatial distortion
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The uniform sampling strategy theoretically becomes problematic as the 3-D coverage of 
each ray passing through each pixel is not uniform due to the projective distortion.

Indoor Scene Outdoor Scene

It is wasteful to keep spending the same amount of learning resources to the low-frequency 
texture regions as are spent on the high-frequency textured regions.

distortion-aware ray sampling

content-aware ray sampling

take into consideration the spatial distortion,
the higher sampling probability are assigned to lower-latitude regions
the lower sampling probability are assigned to the higher-latitude regions

take into the consideration the reconstruction loss of each pixel,
the higher sampling probability are assigned to higher-texture regions
the lower sampling probability are assigned to lower-frequency regions 

Create synthetic datasets Synth360 without camera parameter errors 

・Replica Dataset [2] 

・SceneCity [3] 
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Qualitative comparison on real-world scenes

Outdoor scene
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・ Our proposed method has improved the quality in the high-frequency texture regions.
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Replica Dataset SceneCity

・ Our method is superior to the original NeRF in both efficiency and accuracy.
・The advanced variant of NeRF (AugNeRF [4]) also improve accuracy. 

・We show that our method enhances the quality of real-world scenes in 360°images.
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