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Abstract
Zero-shot detection (ZSD) is a challenging task where we aim to recognize and lo-

calize objects simultaneously, even when our model has not been trained with visual
samples of a few target (“unseen”) classes. Recently, methods employing generative
models like GANs have shown some of the best results, where unseen-class samples
are generated based on their semantics by a GAN trained on seen-class data, enabling
vanilla object detectors to recognize unseen objects. However, the problem of seman-
tic confusion still remains, where the model is sometimes unable to distinguish between
semantically-similar classes. In this work, we propose to train a generative model incor-
porating a triplet loss that acknowledges the degree of dissimilarity between classes and
reflects them in the generated samples. Moreover, a cyclic-consistency loss is also en-
forced to ensure that generated visual samples of a class highly correspond to their own
semantics. Extensive experiments on two benchmark ZSD datasets – MSCOCO and
PASCAL-VOC – demonstrate significant gains over the current ZSD methods, reducing
semantic confusion and improving detection for the unseen classes. Codes and models
will be released at https://github.com/sandipan211/ZSD-SC-Resolver.

1 Introduction
The idea of zero-shot detection (ZSD) [4, 8, 35, 61] has been recently introduced with the
aim of transferring knowledge about some “seen” classes to the “unseen” with the help of
semantic information relating these classes. At test time, trained ZSD models are evaluated
in two settings – (i) test images contain unseen objects only (conventional ZSD), and (ii)
test images can have objects from both seen and unseen classes (generalized ZSD or GZSD).
While many of the ZSD approaches are inspired by the success of zero-shot recognition
methods focusing on improving visual-semantic alignment [4, 8, 27, 34, 35], others tried
leveraging additional information in the form of textual descriptions [23] and synthesizing
unseen samples using generative methods [16, 58, 62], achieving state-of-the-art results. In-
terestingly, most of these approaches suffer from the problem of semantic confusion, where
the knowledge transfer between the seen and unseen classes bridged by semantic represen-
tations is not discriminative enough at times to distinguish between semantically-similar
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classes. This results in low average precisions for the ZSD models, which could prove to be
catastrophic when deployed in real-world environments in the future, e.g. in medical imaging
systems where a high false-positive rate can negatively impact their reliability, or in under-
water explorations where low luminance and turbidity can misguide the detection of marine
debris.

We propose a generative method for ZSD, which aims to resolve semantic confusion by
utilizing a triplet loss [44] while training the feature synthesizer. Specifically, we use Faster-
RCNN [37] as a backbone object detector that can be trained on images containing only
seen class objects. Fixed-size feature vectors for these objects are used to train a conditional
Wasserstein GAN [3] (cWGAN) regularized by a classification loss, following the success
of [53] in the zero-shot recognition task. In order to ensure diversity among the synthe-
sized features, we use a regularization term [26] that alleviates the issue of mode collapse in
conditional GANs. However, such a cWGAN only learns how to synthesize image features
conditioned upon class semantics and does not account for the degree of dissimilarity be-
tween object classes while learning to synthesize their features. Hence we introduce a triplet
loss that can primarily help in learning discriminative features for the semantically-similar
classes, resolving semantic confusion whenever these synthesized features are utilized for
our detection pipeline ahead. Moreover, we explicitly aim to maintain the consistency be-
tween the synthesized visual features and semantics of the corresponding class by incorpo-
rating a cyclic-consistency loss enforcing the synthesized visual features to reconstruct their
semantics. The trained cWGAN is used to generate unseen class features, which are used
to update the classifier of the pretrained Faster-RCNN, empowering it to detect unseen-class
objects as well. Since the performance of this classifier is directly related to the quality of
synthesized features used as inputs for training, accounting for inter-class dissimilarity and
visual-semantic consistency can impact the performance of the detector. Moreover, using a
generative method also minimizes the hubness problem [9, 15, 16, 33, 45, 58].

We summarize our contributions in this work as follows: (i) we propose using a triplet
loss with a flexible semantic margin (refer to Sec. 3.2) while training a feature synthesizer
(cWGAN) which generates unseen object features conditioned upon class semantics and en-
ables our backbone object detector to detect both seen and unseen objects, resolving seman-
tic confusion between similar objects; (ii) visual-semantic consistency is maintained during
feature generation, ensuring generated features correspond well to their semantic counter-
parts; (iii) extensive experiments are performed on two benchmark ZSD datasets (MSCOCO
and PASCAL-VOC) which show that our method remains comparable to the best existing
methods in case of PASCAL-VOC, but comprehensively beats these methods on the more
challenging and bigger dataset MSCOCO in both conventional ZSD and GZSD settings.

2 Related Work
Motivated by zero-shot classification (ZSC) methods [1, 2, 6, 11, 12, 18, 20, 22, 25, 29, 30,
31, 38, 39, 40, 43, 46, 47, 49, 51, 53, 54, 57, 63], the more challenging task of ZSD [4, 8, 35,
61] started gaining attention since 2018. The initial works seek to improve visual-semantic
alignment and extend popular ZSC frameworks like ConSE [31] with trusted object detectors
like Faster-RCNN. In these works, usually projection functions are learned [8, 27, 35] for
capturing seen-unseen and visual-semantic relationships. However, recent methods have
shown that such projection-based strategies can be improved. Contrastive losses designed
with respect to semantic vectors and put into action within a joint intermediate embedding
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space for the visual features and semantic vectors in [56], and a polarity loss [34] which
refines the noisy semantic vectors and explicitly maximizes the gap between positive and
negative predictions, are two examples of such methods.

Some methods additionally target the problem of background-unseen confusion (BUC),
where ZSD models confuse unseen objects with background at test time due to low object-
ness scores for unseen objects. Additional data from external sources is used for obtaining a
vocabulary with classes belonging to neither seen nor unseen classes in [4], encoding an idea
about the background classes. Vocabulary atoms [7] enrich the semantic space with a di-
verse set of linguistic concepts and help relate to the visual features better in [34]. The same
vocabulary is used in [60] along with a background-learnable RPN for detecting objects.

Rather than focusing only on visual-semantic alignment, several methods explore some
other limitations in ZSD using different data structures and multi-modal approaches. Unseen-
class localization gets priority in [63], where predicting class attributes is a side-task and the
produced bounding boxes utilize both visual and semantic information. In a multi-modal
approach, [23] uses unit-level and word-level attention from a language branch for weigh-
ing the outputs of a visual branch for detecting objects. A GCN-based [50] approach is
taken up in [55], utilizing a graph construction module and two semantics-preserving graph
propagation modules. Transformer-based encoder-decoder networks have been used in [59],
achieving a stronger ability to deal with BUC and recall unseen objects.

With generative networks [13, 21] minimizing the hubness problem [33], a few ZSD
methods have also turned to such networks. A conditional VAE is employed in [62] for syn-
thesizing unseen features used to update the confidence predictor of a YOLO [36] detector,
pre-trained with seen objects. In another work [58], three separate GANs are used to gener-
ate visual features with both intra-class variance and IoU variance. Instead, [16] encourages
a unified GAN model that generates discriminative object features and ensures feature diver-
sity. Inspired by the potential of generative methods, we also employ one for our ZSD model
(Fig. 1). However, our work differs majorly from the previous generative approaches in the
use of visual-semantic cyclic consistency loss and in addressing the problem of semantic
confusion, which none of the previous works do. We compare our results in Sec. 4 with
methods following all these aforementioned approaches.

3 Method
Problem Setting: We formally define ZSD here. Let Cs = {1,2, ...S} and Cu = {S +
1,S + 2, ...S +U} be label sets of S number of seen and U number of unseen classes re-
spectively, such that Cs ∩Cu = φ . Moreover, in object detection, a concept of background
class must be identified too – so total class labels become S+U + 1. Let the training data
Dtr = {Im,{Oi

m}
Nm
i=1}M

m=1 consist of M images, having Nm objects with class annotations
in the set {Oi

m}
Nm
i=1 for an image Im. The ith object in Im is annotated as Oi

m = {Bi
m,c

i
m},

where Bi
m = {xi

m,y
i
m,w

i
m,h

i
m} denotes the bounding-box coordinates and ci

m ∈ Cs. More-
over, the semantic descriptions for the seen and unseen classes (d-dimensional word em-
beddings [19, 28, 32]) are given as Ps ∈ RS×d and Pu ∈ RU×d respectively. At test time,
images containing objects from both Cs and Cu can be given, and the goal would be to predict
bounding boxes for every foreground object, along with their class labels.
Backbone object detector: We use a Faster-RCNN [37] Φfrcn with a ResNet-101 [17]
pretrained on ImageNet [41] classes (except the overlapping unseen classes [52]) as a feature
extractor for the input images, yielding a convolutional feature map (ConvMap). A Region
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Proposal Network (RPN) predicts objectness scores for different region proposals in the
ConvMap. For each of the top Np proposals adjudged as foreground by the RPN, fixed-size
feature vectors are extracted from its projection on the ConvMap via RoI pooling. These are
fed to fully-connected layers that branch into a classification module φfrcn−c which classifies
a proposal into one of N + 1 classes (N foreground classes and a “background” class), and
a bounding-box regression module φfrcn−r which regresses over box coordinates for object
localization. Φfrcn is trained on Dtr, and used to extract object-level visual features f i

m ∈Fm
for every seen object in an image Im.

3.1 The feature synthesizer
The baseline architecture of the proposed model is depicted in Fig. 1 (similar GAN also used
in a prior ZSC task [53]). The collection of object features from all training images F s =
{Fm}M

m=1 along with the corresponding seen-class labels serve as real data for a conditional
WGAN [3] (cWGAN). A generator network learns a mapping function G : Z ×Ps −→ F s

that takes p ∈ Ps and z ∈ Z as inputs and learns the underlying distributions of the visual
features from F s, relates them to the corresponding semantics. Here, z ∼ N (0,1) ∈ Rzd is
a random noise vector sampled from a Gaussian distribution. During training, the generator
G generates class-wise seen object features (fake data), feeds them to a critic network Q
for scoring its realness or fakeness and recalibrates itself based on the feedback from Q to
make the generated feature distribution as close to real distribution as possible, minimizing
the loss:

LWGAN = E[Q( f ,c)]−E[Q( f̃ ,c)]+λE[(||∇ f̂Q( f̂ ,c)||2 −1)2] (1)

where the first two terms represent the critic loss in WGAN and the third term represents
a gradient penalty [14], with λ being the penalty coefficient. f̃ = G(z, p) denotes the gen-
erated feature, and f̂ = ρ f +(1−ρ) f̃ , with ρ ∼ U(0,1) [14, 53]. We add a regularization
term [53] that enforces discriminative feature generation using:

LCLS =−E[logp(c|G(z, p);φ
sm
cls )] (2)

where p(y|G(.)) denotes a classification probability given by a linear softmax classifier
φ sm

cls pretrained on F s. Additionally, inspired by [16], we consider the impact of individual
noise vectors on feature generation and enhance feature diversity to prevent the problem of
mode collapse [42] by including a mode-seeking regularization term [26]:

LMS = E[||G(z1, p)−G(z2, p)||1/||z1 − z2||1] (3)

3.2 Triplet loss for resolving semantic confusion
Semantic confusion is a major hindrance in ZSL tasks, where semantically-similar classes
are hard to distinguish at test time, dropping prediction scores for the seen and unseen
classes. In the ZSC task, this problem has been addressed using triplet loss-based meth-
ods [1, 12]. In this work, we leverage a modified triplet loss for our ZSD task. However,
our execution of the triplet loss is different from the ones used in ZSC, where multi-modal
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Figure 1: Model architecture for the proposed ZSD model. The solid arrows show the
workflow in the backbone object detector part, whereas the dashed arrows show the work-
flow regarding the feature synthesizer (cWGAN), optimizing the objective function in Eq. 6.

triplets are formed with visual features as “anchors” and class semantics as “positive” or
“negative” matches, and compatibility scores indicate multi-modal similarity. On the con-
trary, our triplets are strictly visual feature-based, having the form < f̃a, f̃p, f̃n>, where f̃a is
the anchor feature of a cWGAN-generated sample from a given class, f̃p is a positive match
of the same class as f̃a, and f̃n is a negative match of a different class. Instead of compatibil-
ity scores, we focus on similarity in the visual space spanned by our triplets and optimize:

LTRIPLET = max{0,(d( f̃a, f̃p)−d( f̃a, f̃n)+∆)} (4)

where d(., .) is the Euclidean distance. Our motivation is that the quality of the features
generated on the basis of class semantics heavily impacts the classification ability of φfrcn−c

at a later stage – therefore, accounting for inter-class dissimilarities explicitly in the visual
space can address semantic confusion during the feature generation phase itself. In addition,
Eq. 4 uses a flexible semantic margin ∆ acquired as a pre-computed value from a rescaled
Mahalanobis distance matrix with respect to class semantics [5], instead of keeping it at a
fixed, constant value [1, 12]. This is because we want the generator to acknowledge the
degree of dissimilarity between two classes and reflect them in the generated features by
accounting for the first and second-order statistics of the class semantics.

To the best of our knowledge, such an approach has not been considered in ZSD yet.
Moreover, we recognize the fact that utilizing triplet loss for a generative ZSD approach like
ours could prove quite beneficial as our cWGAN can explicitly learn to reduce confusion
between semantically-similar classes, producing generated features that are robust to such
semantic similarities.

3.3 Cyclic consistency between the visual and semantic spaces
The cWGAN assumes that generated object features for a class conditioned upon its seman-
tics would have a distribution close to the real features of that class. This stems from an im-
plicit assumption that the visual and semantic distributions for that class are relatively similar.
However, this can bias the generated features of the unseen classes towards semantically-
similar seen classes on which the cWGAN is trained, negatively affecting φfrcn−c at the next
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Table 1: ZSD and GZSD performance of various methods on MSCOCO in terms of mAP
and Recall@100 (RE@100) at an IoU threshold of 0.5. HM denotes the harmonic mean of
seen and unseen results for GZSD. The best results and second-best results are shown in red
and blue respectively. Results are shown for the 65/15 split of MSCOCO.

Metric Method ZSD GZSD
Seen Unseen HM

mAP

PL [34] 12.40 34.07 12.40 18.18
BLC [60] 14.70 36.00 13.10 19.20

ACS-ZSD [27] 15.34 - - -
SUZOD[16] 17.30 37.40 17.30 23.65
ZSDTR [59] 13.20 40.55 13.22 20.16

ContrastZSD [56] 18.60 40.20 16.50 23.40
Ours 20.10 37.40 20.10 26.15

RE@100

PL [34] 37.72 36.38 37.16 36.76
BLC [60] 54.68 56.39 51.65 53.92

ACS-ZSD[27] 47.83 - - -
SUZOD[16] 61.40 58.60 60.80 59.67
ZSDTR [59] 60.30 69.12 59.45 61.12

ContrastZSD [56] 59.50 62.90 58.60 60.70
Ours 65.10 58.60 64.00 61.18

stage. Hence, we implement a cyclic consistency module forcing the generated features to
reconstruct the class semantics based on which they were generated in the first place. A
visual-semantic mapper M : F s −→ Ps is first trained on seen data, which is an MLP that
learns to map object features of seen classes to their semantic counterparts, minimizing a se-
mantic reconstruction loss. During cWGAN training, the synthesized features are passed to
the pretrained M which reconstructs the semantics from these features, and a reconstruction
loss is optimized as:

LCYCON = E
p∼Ps

[||p−M(G(z, p))||22]+ E
p∼Pu

[||p−M(G(z, p))||22] (5)

The overall objective function becomes:

min
G

max
Q

α1LWGAN+α2LCLS+α3LMS+α4LCYCON+α5LTRIPLET, (6)

making the generated features diverse and robust to semantic confusions and visual-semantic
inconsistencies. Once the cWGAN is trained, we train a classifier φ u

cls using the generated
unseen features. The learned weights are provided to φfrcn−c to make it capable of classify-
ing unseen visual features.

4 Experiments

4.1 Datasets and evaluation metrics
We evaluate our proposed method extensively on two commonly used datasets in ZSD –
MSCOCO and PASCAL-VOC. MSCOCO [24] is a large-scale dataset containing annotated
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Table 2: Class-wise average precisions (APs) on unseen classes (ZSD) from MSCOCO with
an IoU threshold of 0.5. The best results and second-best results are shown in red and blue.

Method
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PL[34] 12.40 20.0 48.2 0.63 28.3 13.8 12.4 21.8 15.1 8.9 8.5 0.87 5.7 0.04 1.7 0.03
ACS-ZSD[27] 15.34 8.72 25.5 6.59 40.8 54.0 9.55 10.6 26.8 16.4 11.0 4.99 7.83 6.21 1.32 0.0
SUZOD[16] 17.30 17.8 46.3 0.7 63.1 41.0 10.5 0.7 30.2 16.5 17.6 0.0 13.4 1.6 0.4 0.2

Ours 20.10 22.9 53.3 0.6 64.9 54.3 13.2 1.2 31.2 15.7 22.6 0.0 17.5 2.7 0.7 0.2

Table 3: mAP (in %) for PASCAL-VOC dataset. The unseen classes are shown in italic. The
best and second-best results are shown in red and blue.
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HRE [8] 65.6 54.2 70.0 73.0 76.0 54.0 42.0 86.0 64.0 40.0 54.0 75.0 80.0 80.0 75.0 34.0 69.0 79.0 55.0 82.0 55.0 26.0
PL [34] 63.5 62.1 74.4 71.2 67.0 50.1 50.8 67.6 84.7 44.8 68.6 39.6 74.9 76.0 79.5 39.6 61.6 66.1 63.7 87.2 53.2 44.1

SAN [35] 69.6 57.6 71.4 78.5 74.9 61.4 48.2 76.0 89.1 51.1 78.4 61.6 84.2 76.8 76.9 42.5 71.0 71.7 56.2 85.3 62.6 26.4
BLC [60] 75.1 55.2 78.5 83.2 77.6 67.7 70.1 75.6 87.4 55.9 77.5 71.2 85.2 82.8 77.6 56.1 77.1 78.5 43.7 86.0 60.8 30.1

SUZOD [16] 74.7 63.1 80.6 84.2 78.7 66.7 67.6 74.0 91.5 61.1 75.0 63.4 82.6 85.7 84.9 47.8 76.9 74.8 55.2 92.3 59.0 46.1
Ours 74.7 62.7 80.4 84.1 78.7 66.6 67.6 73.8 91.4 61.1 75.0 63.7 83.1 85.5 84.9 47.3 76.7 74.7 55.6 92.6 57.5 45.0

images from 80 object classes, for which we use the seen/unseen split of 65/15 provided
by [34]. PASCAL-VOC 2007/2012 [10] contains annotated images from 20 object classes,
for which we use the 16/4 split provided in [8]. We follow [16] while obtaining the sets
of training and testing images. Following [4] and [34], we use Recall@100 (RE@100) and
mean average precision (mAP) as evaluation metrics and report our results at an IoU of 0.5.
In the GZSD setting, we follow [34] and show the mAP on seen and unseen classes and
consider their harmonic mean (HM) as the overall performance metric.

4.2 Implementation details
For the RPN, anchor bounding boxes with an IoU ≥ 0.7 are regarded as foreground , whereas
those with IoU ≤ 0.3 are regarded as background, yielding Np = 2000 proposals for each im-
age with an NMS threshold of 0.7. The backbone Faster-RCNN model is trained on seen data
first for 12 epochs and 4 epochs on the GPU for MSCOCO and PASCAL respectively. Classi-
fiers and bounding-box regressors are both fully-connected neural layers. The cWGAN takes
300-dimensional FastText embedding vectors [19] as class semantics and 1024-dimensional
object features extracted using RoI pooling layer of the Faster-RCNN (pretrained on seen
data) as real features. The generator and critic networks are implemented as single-layered
neural networks with 4096 hidden units. For Eq. 6, we empirically set the hyperparameter
values as α1 = 1.0,α2 = 0.01,α3 = 0.01,α4 = 0.01 and α5 = 0.1. The cWGAN is trained
for 55 epochs, and the weights from the best epoch are used further. Adam optimizer is used
for both G and Q networks, with a learning rate of 0.0005 and mini-batch size of 128. Gen-
erated features for both seen and unseen classes are checked for their consistency via Eq. 5,
and also used for constructing all possible triplets online [44] for Eq. 4.

4.3 Results: Comparison with the State-of-the-art
Results on MSCOCO. (i) ZSD setting: Table 1 shows that our method achieves a relative
mAP gain of 8% over the next-best method [56], and a relative RE@100 gain of 6% over
the next-best method [16]. This reflects the superior performance of generative methods over
others, especially because we get rid of the hubness problem while augmenting visual data
for the unseen classes in a cycle-consistent manner.
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(a) (b)

Figure 2: (a) Comparison of recall@100 for various IoU thresholds on MSCOCO; (b) mAP
variation depending on the number of synthesized unseen features in case of MSCOCO
(unseen mAP considered for ZSD and HM of seen and unseen mAP considered for GZSD).

Text

(a)

(b)
SUZOD Ours

(c)

Figure 3: Qualitative results on MSCOCO (best viewed in zoom). (a) ZSD results; (b) GZSD
results; (c) Comparison of our GZSD results with the current state-of-the-art (SUZOD [16]).
The seen and unseen class objects are detected within green and red boxes.

Table 4: Impact of including different loss terms for
training the feature synthesizer on mAP (in %) during
evaluation on the MSCOCO dataset.

LWGAN LMS LCLS LCYCON LTRIPLET mAP

✓ ✓ ✓ ✓ 18.4
✓ ✓ ✓ ✓ 18.5
✓ ✓ ✓ ✓ 19.3
✓ ✓ ✓ ✓ 19.4
✓ ✓ ✓ ✓ ✓ 20.1

Moreover, the gain we achieve
for a challenging metric like mAP,
where false positives are penal-
ized, suggests that our triplet loss
is indeed reducing semantic con-
fusion and helping in correct clas-
sification of unseen objects. At
a class-level (Tab. 2), we achieve
better results for most unseen
classes. However, some classes
like parking meter, frisbee and hot
dog show decreased performance, possibly due to the unavailability of semantically-similar
seen classes, affecting conditional feature generation. The same is reflected in the t-SNE [48]
plot in Fig. 5(a), where these classes do not form very well-defined clusters as compared to
other unseen classes like bear, pointing out a challenging aspect of generative approaches.
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(a) (b)

Figure 4: Qualitative results on PASCAL-VOC (best viewed in zoom). (a) Unseen detec-
tions; (b) Comparison of our results (bottom row) with SUZOD [16] (top row).

(a) (b)

Figure 5: t-SNE visualization [48] of the generated features for unseen classes in (a)
MSCOCO and (b) PASCAL-VOC.

Figure 2(a) shows a comparison with different methods for the RE@100 values at differ-
ent IoU thresholds during ZSD evaluation. Our method outperforms all methods [4, 16, 23,
31, 35, 55, 56, 58, 59, 60] for three IoU thresholds, even when some of the existing methods
use additional semantic information from external vocabularies [4, 23].

(ii) GZSD setting: GZSD is a challenging setting as there always exists a bias towards the
seen classes for the model. Table 1 shows a relative mAP gain of 10.5% over the next-best
method (SUZOD [16]) considering HM. We, therefore, comprehensively beat the current
state-of-the-art results for MSCOCO in both ZSD and GZSD settings.

(iii) Qualitative analysis: Figure 3(a) shows our method can detect multiple unseen in-
stances of the same object class as well as multiple objects from different classes. Objects
from different viewpoints and small sizes (Fig. 3(b)) have also been detected well. Low lo-
calization error is encountered for GZSD cases too, with good robustness against background
clutter and occlusion. Figure 3(c) compares the localization and classification abilities of our
method with the state-of-the-art GZSD method [16]. Unlike our method, [16] succumbs to
semantic confusion and wrongly detects objects like bicycle, motorcycle, keyboard, and bed.
Results on PASCAL-VOC. The unseen classes show improved results as compared to state-
of-the-art ( SUZOD [16]) on account of improvement in the generated unseen-class features
(Fig. 4(a)). However, Tab. 3 reports our unseen mAP is second-best to [16] (only by 0.4%),
probably due to the relatively small size of the training data, which might not be enough to
learn inter-class dissimilarities sufficiently and hence make an impact on the feature synthe-
sizer and object detector. Nevertheless, we compare our visual results with [16] in Fig. 4,
showing that semantic confusion between car and train is common for [16], but not for

Citation
Citation
{Hayat, Hayat, Rahman, Khan, Zamir, and Khan} 2020

Citation
Citation
{Van Derprotect unhbox voidb@x protect penalty @M  {}Maaten} 2014

Citation
Citation
{Bansal, Sikka, Sharma, Chellappa, and Divakaran} 2018

Citation
Citation
{Hayat, Hayat, Rahman, Khan, Zamir, and Khan} 2020

Citation
Citation
{Li, Yao, Zhang, Wang, Kanhere, and Zhang} 2019

Citation
Citation
{Norouzi, Mikolov, Bengio, Singer, Shlens, Frome, Corrado, and Dean} 2013

Citation
Citation
{Rahman, Khan, and Porikli} 2018{}

Citation
Citation
{Yan, Zheng, Chang, Luo, Yeh, and Hauptman} 2020

Citation
Citation
{Yan, Chang, Luo, Liu, Zhang, and Zheng} 2022

Citation
Citation
{Zhao, Gao, Shao, Li, Yu, Ji, and Sang} 2020

Citation
Citation
{Zheng and Cui} 2021

Citation
Citation
{Zheng, Huang, Han, Huang, and Cui} 2020

Citation
Citation
{Bansal, Sikka, Sharma, Chellappa, and Divakaran} 2018

Citation
Citation
{Li, Yao, Zhang, Wang, Kanhere, and Zhang} 2019

Citation
Citation
{Hayat, Hayat, Rahman, Khan, Zamir, and Khan} 2020

Citation
Citation
{Hayat, Hayat, Rahman, Khan, Zamir, and Khan} 2020

Citation
Citation
{Hayat, Hayat, Rahman, Khan, Zamir, and Khan} 2020

Citation
Citation
{Hayat, Hayat, Rahman, Khan, Zamir, and Khan} 2020

Citation
Citation
{Hayat, Hayat, Rahman, Khan, Zamir, and Khan} 2020

Citation
Citation
{Hayat, Hayat, Rahman, Khan, Zamir, and Khan} 2020

Citation
Citation
{Hayat, Hayat, Rahman, Khan, Zamir, and Khan} 2020



10 S. SARMA, S. KUMAR, A. SUR: RESOLVING SC FOR ZSD

us. The t-SNE plot of the generated unseen class features in Fig. 5(b) demonstrates good
separability between classes, even for semantically-similar classes like car and train.

4.4 Ablation Studies
Effect of the loss components: Table 4 shows that LCYCON provides an mAP boost as per our
intuition, which indicates that generated features by the cWGAN are more discriminative and
consistent with their class semantics. However, LTRIPLET has the strongest influence on ZSD,
without which mAP is 18.4% – but jumps to 19.4% even when LCYCON is not utilized. LCLS

provides mAP boost only when included in conjunction with the other loss terms. However,
optimal performance is attained when using all five loss terms for training cWGAN.
Effect of the number of generated examples: We fix the number of generated seen features
while training cWGAN and vary the number of class-wise unseen features generated by the
trained cWGAN. When evaluated on MSCOCO in ZSD and GZSD settings, we find our
model achieves optimal results when 250 features are generated per unseen class (Fig. 2(b)).

5 Conclusion
While transferring knowledge from the seen to unseen classes, most existing ZSD methods
face confusion while detecting semantically similar classes. We propose a generative method
that inherently eliminates the hubness problem in zero-shot conditions. Our triplet loss with
a flexible semantic margin acknowledges the degree of dissimilarity between object classes
while learning to synthesize discriminative object features. Moreover, a cyclic-consistency
loss is enforced to maintain the visual-semantic consistencies during feature generation. Ex-
periments and ablation studies on two challenging datasets show that we achieve state-of-the-
art results, both qualitatively and quantitatively, improving upon some of the fundamental
challenges the existing ZSD methods face, such as semantic confusion, high false-positive
rate, and misclassification of localized objects. From a research perspective, future direc-
tions include improving the model architecture for better localization of unseen classes and
reducing background-unseen confusion. From an application perspective, our ZSD model
can be used as a plug-and-play module in the future for various vision applications, even in
challenging environments. For instance, images captured in underwater environments can be
pre-processed via image restoration techniques and fed to our ZSD model. Our model can
detect novel species of fish, corals, and also help in trash detection by localizing different
kinds of unseen trash objects such as plastic snack wrappers.
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