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Abstract

Unsupervised optical flow estimators based on deep learning have attracted increas-
ing attention due to the cost and difficulty of annotating for ground truth. Although per-
formance measured by average End-Point Error (EPE) has improved over the years, flow
estimates are still poorer along motion boundaries (MBs), where the flow is not smooth,
as is typically assumed, and where features computed by neural networks are contami-
nated by multiple motions. To improve flow in the unsupervised settings, we design a
framework that detects MBs by analyzing visual changes along boundary candidates and
replaces motions close to detections with motions farther away. Our proposed algorithm
detects boundaries more accurately than a baseline method with the same inputs and is
shown to improve estimates from different flow predictors without additional training.

1 Introduction

Optical flow estimation is an important problem in computer vision as it enables high-level
tasks such as motion segmentation [22, 34], action recognition [38], and object tracking [45].
Unsupervised prediction has been attracting increasing attention [19, 24, 25, 30, 41, 46] since
annotating real video is both expensive and difficult [50], and it is still not clear how well
synthetic video can simulate real data. The state-of-the-art average End-Point Error (EPE)
of both unsupervised [24, 41] and supervised [43, 44] estimators on benchmark datasets
has been decreasing ever since the introduction of Convolutional Neural Networks (CNNis)
for this problem. The maximum EPE of the estimated flow, on the other hand, is typically
much larger and occurs mainly along Motion Boundaries (MBs).

To illustrate the performance degradation near MBs, Figure 1 (left) shows the perfor-
mance of top flow estimators, both unsupervised and supervised, stratified by pixel distance
to the closest MB on MPI-Sintel. The EPE increases with decreasing distance from a bound-
ary, regardless of whether supervision is available. Fundamentally, estimating motion near
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MBs is harder than elsewhere. First, flow is discontinuous across MBs, while typical es-
timators assume smoothness. Second, the features matched to find point correspondences
between frames have wide receptive fields [9, 16, 43, 44] and straddle MBs when they are
near them. Appearance on the two sides of a boundary typically changes in different ways
from frame to frame, because of the different motions. As a consequence, feature correspon-
dences across frames are often poor along boundaries, and this often results in poor flow
estimates.
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Figure 1: Left: EPE, flow estimation error e = ||F' — F|| (F is the estimate, F is true flow),
for a top supervised flow estimator, RAFT [44] (orange), and two top unsupervised flow
estimators, AR-Flow [24] (blue) and SMUREF [41] (green) versus distance to the closest true
MB, averaged on all of MPI Sintel (clean). Estimates worsen near MBs. Right: Plots of
the two error sources for replacement flow. Every point p that is 2 pixels away from a true
MB is a replacement target point. If b is the closest MB point to p, let a unit vector u
point from b to p. A point q = p + cu, for ¢ € [0,20], is used for this plot as long as every
point in the line segment from p to q is within the frame and closer to b than to any other MB
point. For these p, q pairs, the plot shows the estimation error e = || F'(q) — F (q)|| (green), the
approximation error a = || F (q) — F (p)|| (blue), and the replacement error r = ||F (p) — £ (q) |
(solid red) averaged on all of MPI-Sintel (clean) and with F values from SMUREF [41]. Flow
replacement is favorable (the solid red line is under the EPE at p, dashed red) over a wide
range of values for c.

In this paper, we propose a method to detect MBs and refine optical flow near them
without supervision. Our method first detects MBs from the input flow estimated by an
existing unsupervised estimator. Near these boundaries, it improves each flow estimate by
replacing it with the flow a bit farther away from the MB. The possible improvement on the
average EPE over the whole image is bounded by the fact that MBs are a small fraction of
any image: Only around 1% of all the pixels in the dataset used in Figure | are on true MBs.
However, improvements in the maximum EPE are important for applications that require
clean MBs and accurate flow estimates near them. For example, accurate MBs would help
sharpen the segmentation boundaries of moving objects in video object segmentation [5,
28] and help prevent color bleeding in the color propagation of moving objects in video
editing [33]. In addition, recent video interpolation methods require flow estimates as input
and interpolation results degrade near MBs because of poor flow estimates near them [2, 35].

There has been little work explicitly detecting MBs [1] and improving the flow near them
without supervision [18, 21, 48]. Typically, a baseline method detects MBs by thresholding
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the magnitude of the flow gradient. However, results are often poor because flow estimates
are both inaccurate and smooth near MBs. We show that accurate prediction of MBs from
imperfect flow estimates also helps improve flow estimates near MBs. Our proposed MB de-
tection method uses hysteresis thresholding [6] on maps of flow gradient magnitude, image
edge maps, and on novel maps we propose in this paper. These new maps identify locations
in the input flow map where MBs are likely to exist, based on the observation that changes of
appearance in the foreground and background on the two sides of a MB are more consistent
with their own motion than with the motion on the other side. Thus, given a point on a MB
candidate, we consider two points nearby, one on each side of the boundary, and we mea-
sure how the appearance of each point would change when subjected in turn to the motions
measured at either of them. If the candidate is away from a boundary, all four combinations
of point and motion typically yield good matches between frames. If the candidate is on a
boundary, at least two combinations often yield poorer matches.

When replacing flow values near boundaries with values farther away, we face two con-
trasting sources of error: The approximation error comes from the fact that motion measured
at one pixel replaces motion measured elsewhere. This error decreases as the replacement
motion is taken closer to the replacement candidate. The estimation error stems from the fact
that even the replacement estimate is not exact. This error increases closer to MBs, where
flow estimates degrade. Figure 1 (right) shows plots of these two errors. This trade-off ex-
plains why the replacement method cannot make improvement away from MBs, where the
estimation error is flat. Even near MBs, not every point can improve through replacement.
We observe that the difference in the flow values on the two sides of the MBs is a useful
indicator of which points can benefit from replacement.

Empirically, our MB detection method improves over the baseline methods both quanti-
tatively and qualitatively. Our replacement algorithm improves flow at promising candidate
points near MBs when compared to the state-of-the-art unsupervised flow estimators on both
synthetic and real video benchmarks. We also analyze various properties of flow estimates
near MBs. To the best of our knowledge, this is the first work that specifically improves and
analyzes MB detection and nearby flow estimates in the unsupervised setting.

2 Related Work

Flow Estimation and Refinement Flow estimation has been studied for a long time [3,
7, 11, 12, 26, 47], culminating with recent work with CNNs [9, 13, 14, 15, 16, 17, 25,
36, 43, 44]. Recently, vision transformers and attention mechanisms have also led to better
results [42, 49]. Supervised CNN methods are trained on datasets like MPI Sintel [4] or
KITTI [10]. The aperture problem requires regularization, and all systems assume a smooth
flow, either explicitly or implicitly and either during inference (classical methods) or dur-
ing training (deep learning). State-of-the-art methods [44] achieve good average sub-pixel
accuracy, but predictions are typically at a quarter or even an eighth of the original resolu-
tion because of computation cost. Final predictions are then up-sampled, again assuming
smoothness. Also, features in these systems have wide receptive fields, with the negative
implications discussed earlier. As a result, the maximum EPE tends to be quite large (Figure
1) even when the average EPE is small, a problem that has so far attracted little attention.
Since annotating realistic flow datasets is hard and expensive, many unsupervised CNN
methods [19, 24, 25, 30, 41, 46] have been proposed since the pioneer work by Yu et al. [20]
and Ren et al. [37]. The top unsupervised networks often evolve from the best supervised
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ones. The two top unsupervised estimators used in our experiments are AR-Flow [24] and
SMUREF [41], and are based on the top supervised networks PWC-Net [43] and RAFT [44]
respectively. While achieving good average EPEs on benchmarks, the unsupervised flow
estimators also degrade in performance near MBs.

Our method explicitly detects MBs and refines the flow near them without requiring
motion labels. A related unsupervised method [27] additionally predicts a so-called inter-
polation flow and weight for each pixel. The interpolation flow guides where to find the
replacement flow and the weight indicates the contribution of the replacement to the final
prediction. Another supervised method [14] also replaces low-confidence flow values by
nearby higher-confidence flow values under certain conditions. However, these methods end
up replacing flow values far from MBs as well, which can be problematic.

It would seem at first that methods that sharpen depth maps near edges [39] can be
adapted to correcting flow estimates near MBs. However, improving flow near MBs is differ-
ent from simply sharpening the MBs, as it requires identifying both the poor flow estimates
and good flow substitution candidates. So it is not clear how this adaptation would work.

Some flow estimators use additional frames as input and achieve better flow estimates
in occluded areas (which are different from, but closely related to MBs) [19, 24, 25]. How-
ever, estimation errors still increase with decreasing distance from MBs. Our method uses
3 frames to detect MBs, which none of these estimators detect, and specifically refine flow
estimates near them. Thus, our motion refiner can also benefit these models near MBs.

Motion Boundary Detection Thanks to new datasets with MB labels, recent supervised
approaches use machine learning algorithms to detect MBs. LMDB [48] uses structured
random forests [8] that take as inputs two consecutive images, forward and backward optical
flow estimates, and image warping errors. More recent approaches use multi-task learning.
Lei et al. propose a fully convolutional Siamese network that jointly estimates both object
boundaries and the motion of the pixels on them [23]. Ilg et al. [18] simultaneously estimate
occlusions, depth boundaries, MBs, optical flow, disparities, motion segmentation, and scene
flow (FlowNet-CSS). The state-of-the-art approach, MONets [21], jointly predicts MBs and
occlusions by explicitly exploiting the relationship between the two tasks.

These supervised methods require ground-truth flow. In contrast, our MB detection
method is unsupervised. Alhersh and Stuckenschmidt [1] work in a similar direction. They
propose to use unsupervised loss to fine-tune the pre-trained flow estimators and thereby
improve the detection of MBs based on the gradient of the estimated optical flow field. In
comparison, we do not use any supervised pre-trained model and require no additional train-
ing. In addition, our approach detects MBs first and then improves flow estimates near them.

3 Method

Our method takes as input three consecutive video frames I, I, and I3 and two optical flow
maps F5 (from I to I;) and F3 € RP¥*2 (from b to I3) estimated using any unsupervised
flow predictor. We first detect MBs Bps € {0, 1}" from frame I to I;. We then identify
points p near boundaries whose flow estimates can be potentially improved by replacing
them with those at nearby points . These replacements yield a refined map F2’3 € Rwx2,
We now explain the components of boundary detection and flow refinement .

ICode is available at ht tps://github.com/pszyu/unsupervised-mb-flow-refinement.
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3.1 Motion Boundary Detection

MBs are detected by hysteresis thresholding [6] from three feature maps, all in {0, 1}

The image edge map M., the motion discrepancy map M,,;, and our proposed map of invalid
smooth motion M;jg,. Specifically, M, is computed by the DexiNed [40] edge detector in
our experiments. M,,; is obtained by thresholding the magnitude of the flow gradient. M;y,,
complements M,,; by also flagging pixels where the smooth motion in the estimated flow
map is unlikely to be correct, as explained below. The detector based on these maps is
described in Section 3.1.2.

3.1.1 Invalid smooth motion map

Flow estimators tend to over-smooth their predictions across MBs, and the M;g,, map flags
areas where the spatial smoothness of flow estimates may be unwarranted. The map is com-
puted by analyzing two patches, one on each side of MB candidates. Let b be a point in
frame I, where the gradient g of image brightness is nonzero and let u be either of the two
unit vectors parallel to g. MB typically align with image edges, so if b is on a MB f3, then
the following two points are likely on opposite sides of 3:

a=b+ou and c=b-ou. (D

We use ¢ = 5 in our experiments and order a, ¢ so that a has the smaller EPE.

Our proposed method for detecting the invalid smooth motion is based on the observation
that the flow estimates on one side of MB are often much better than those of the other side.
To illustrate, Figure 2 shows scatter plots of the EPEs of all the a, ¢ pairs for the whole Sintel
sequence “alley_2”. The point clouds have long vertical tails in both the clean (left) and final
(right) passes. For instance, in this specific sequence (clean), the EPE of flow estimates for
54% of the true MB points is sub-pixel at a but not at c. Moreover, the asymmetry is 5 pixels
per frame or greater in about 36% of these asymmetric cases. The statistics are similar for
the final pass. One reason for this asymmetry is that flow estimates tend to be poor on the
background side of occluding MBs, where points in one frame have no match in the other.

IS
S

EPE (pixel) of flow estimate at point ¢
EPE (pixel) of flow estimate at point ¢

0 10 15 20 25 30 35 A (] 10 15 20 25 30 35 40
EPE (pixel) of flow estimate at point a EPE (pixel) of flow estimate at point a

Figure 2: The scatter plots of the EPEs of point a (x-axis) and ¢ (y-axis), as defined in
Equation 1, for all the true MB points in the Sintel sequence “alley_2" clean (left) and final
(right) pass. Without loss of generality, a has smaller EPE.

Let p be either a or ¢. The appearance change resulting from matching point p in frame
I; to point p+ v by motion v in frame I; is measured by the matching cost ¢;;(p,v) =
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—sij(p,p+ V) where s;;(-) is the Pearson correlation between the features of its arguments,
i.e., s(p,q) = fyfq/(|[fp]| - [Ifq]]) € [~1,1]. In our experiments fy is the vector of the RGB
values of a 3 x 3 patch around p, centered by subtracting the mean patch color.

Matching costs under forward motion For simplicity, let /' = F>3. Without knowing
which side the EPE is smaller, if we use ¥ (a) or F'(c) to match either a or ¢ in frame I to a
point in frame I3, we get four cost measurements #aq, Mac, Mea, Mee, Where mye = c(a, F(c))
and so forth (Figure 3 (a)).

Second Frame
I

Replacement

L J Motion
First Frame Boundary

(a) (b)

Figure 3: (a) The four matching costs that are used in checking whether the smooth motion
across a point is valid. The blue and red arrows represent the estimated motion of the blue
and red patches respectively. (b) Notation for the replacement algorithm. The line through q,
b, ¢’ is perpendicular to the boundary at b, and parallel to unit vector u. Only the estimated
flow of one side of the boundary, in set P, may be replaced by q.

Away from MBs and with no occlusion, the estimated flow is often accurate. Since flow
is smooth there, we typically have may — mea < 05, for some pre-defined small threshold
Oism. Similarly, mge — mee < 6;5,. However, occlusions may also occur away from MBs in
the presence of large motions [21]. In that case, the inequalities above are likely to hold with
backward motion, as explained later.

Near MBs, and where the EPE is asymmetric as explained earlier, let a be the point with
the smaller EPE, without loss of generality. We assume that the matching cost of ¢ is large
following the motion of a, i.e. m¢, is large. On the other hand, ma, is likely small. Similar
considerations follow when a and ¢ are switched, and we accordingly define the map

Mg (b) = max{mac — Mee, Mea — maa} > Oigm - 2)

There will be false negatives if the flow estimates are inaccurate on both sides of b, and
false positives if there is a large matching cost away from MBs. Using backward motion and
hysteresis thresholding, as explained next, will mitigate these false predictions.

Adding backward motion Suppose the motion is smooth between frames 1 and 3. An
additional frame I; is helpful to the detection of the MB because an occluding MB forward
in time is a dis-occluding MB in reverse time, and flow near dis-occlusions are often more
accurate than near occlusions. We therefore redefine the cost as follows:

gy = min{caz(x, F23(y)), c21(x, Fo1 (¥)) } - 3

3.1.2 Detection algorithm

We use a notion similar to hysteresis thresholding [6] to combine the edge map M,, motion
discrepancy map M,,;, and invalid smooth motion map M;,. Specifically, points for which
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M,,q is true are classified as strong MBs. A point is classified as weak MB where M,,,; is false
and both M, and M, are true. Other points are classified as non-motion-boundary points.
A weak MB point becomes a strong one if it is spatially connected with some strong MB
points. The final strong MB points are the final predictions from the detector.

3.2 Flow Replacement

From the analysis above, replacing flow at p with flow at q near a MB is most effective where
the improvement from a smaller estimation error at q trumps the increasing approximation
error as p and q are taken farther apart. This turns out to occur most often for points p where
true flow is small and true flow opposite the MB is large. At these points p, the approximation
error is smaller because the flow is smaller and therefore typically changes less rapidly. The
estimation error is smaller as well, because flow predictors do better on smaller motions.

To identify these points, a method is needed to detect points on the two sides of a MB
candidate where flow can be estimated well. Since flow is smooth on either side of a MB,
most of the variation in flow with the distance d = ||q —b|| of q from the MB is caused
by interference from the flow across the MB. Figure 1 (left) shows that this interference
tends to drop and saturate as the distance d from the MB increases. Thus, flow estimates
tend to change more rapidly for smaller values of d than for larger ones. Formally, let
f(d) = F(b+du) for brevity. Then, the change §(d,d + 1) = || f(d) — f(d + 1)|| resulting
from a one-pixel increment from d to d + 1 drops and saturates as well. We measure this
drop relative to the overall change in flow from distance 1 to distance d, that is, relative to
8(1,d) = ||f(1) — f(d)|| and define the smallest safe distance d* to be the smallest distance
for which the ratio between &(d,d + 1) and J(1,d) drops below some threshold 7 € (0, 1):

e |17~ Fd )]
¢ = {" 70— 7@ “}' @

We use T = 0.2 in all our experiments.

Let now q = b+ d*u be the first safe point on one side of the MB, and similarly define a
first safe point q’ on the other side. Then, we define the set P containing all the replacement
candidates near b as follows:

P={p=b+du|0<d<d & ||F F()|| & ||F(q)—F(q)|| > a|F
p=b+du|0<d<d’ & |F(q)<|F(q)l & [[F(q)—F(q)|>calF(q)p

close to MB side with smaller flow large difference across MB
(%)
We use ¢ = 0.2 in our experiments. The refined flow is (Figure 3 (b))
F'(p)=F(q) ifpcP and F"(p)=F(p) otherwise. (6)

4 Empirical Results

4.1 Experiment Settings

Datasets: MPI-Sintel [4] dataset provides the optical flow labels for each frame of 23 high
resolution synthetic sequences of 20 to 50 frames each in its training set. Fast motion and
large occluded areas make this dataset challenging. We follow LDMB [48] to compute the
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ground-truth MB labels. KITTI-2015 [31, 32] is a realistic dataset that is commonly used as
a benchmark in flow estimation. However, its training set, consisting of 200 image pairs, only
provides sparse ground truth optical flow, and thus accurate true MBs cannot be inferred. We
use these two training sets to demonstrate the improvement of our algorithm on the detection
of MBs and the flow estimates near them.

Performance evaluation: We evaluate estimated MBs by Fj-score. We follow the liter-
ature [ 18, 48] and use the BSDS benchmark [29] to compute MB detection performance. A
prediction is a true positive as long as it is within 0.75% of the image diagonal away from a
true MB [18]. Optical flow is evaluated by End-Point Error (EPE).

Flow estimators: All the flow estimators are trained without ground-truth labels, and
are provided by their authors [24, 41] (More details in the supplementary material).

Hyper-parameters: The threshold for the motion discrepancy map is set to be 1 for
Sintel and 3 for KITTIL. For MB detection, we set the threshold 6;, for the maps of in-
valid smooth motion as 0.2 for Sintel dataset and 0.6 for KITTI. The impact of the hyper-
parameters is analyzed in the supplementary material.

4.2 Motion Boundary Detection

In Table 1, we compare our method with the baseline method, i.e. map M,,;, over different
input flows to show our method’s robustness. The performance is evaluated on both the clean
and final passes of the MPI Sintel training set, following the literature [21].

The table shows that the performance of both the baseline method and ours improves
with better input flow, except that the baseline method does better with LDOF than with AR-
Flow on Sintel clean. Our method consistently outperforms the baseline method across all
three flow estimators and on both passes. The improvement ranges from 5.97% (70.3 to 74.5)
on Sintel clean with SMURF to 21.09% (53.1 to 64.3) on Sintel clean with AR-Flow. The
largest improvements on both passes are with AR-Flow. On one hand, the good performance
by the baseline method with SMUREF limits the margin for improvement. On the other hand,
the estimated flow needs to be accurate at least on one side of a MB for good detection, and
thus the inaccurate input flow from LDOF limit the improvement margin as well.

Figure 4 shows two MB detection examples on Sintel (clean). Our method detects some
MBs missed by the baseline method (red ovals in columns 2, 5) thanks to the invalid-smooth-
motion maps, even if these are noisy (fourth column).

SMUREF [41] AR-Flow [24] LDOF [3]
Flow BL Ours | Flow BL Ours | Flow BL  Ours
(EPE) (F1) (F1) | (EPE) (F1) (F1) | (EPE) (F1) (F1)
Clean | 201 703 745 | 279 531 643 | 418 548 59.2
Final 287 635 674 | 373 485 571 6.25 4677 51.2

Sintel

Table 1: Fj-score for MB estimation with different input flow estimates, compared with
the baseline method (BL). SMURF [41] and AR-Flow [24] are two top unsupervised flow
estimators, and LDOF [3] is a top classical flow estimator.

Map ablation study: Maps M, and M;,, (columns 3, 4 in Figure 4) complement each
other: The edge map localizes geometry well but does not convey motion information. The
map M;,, contains motion information but is noisy. Table 2 shows that using either map
alone on top of M,,; (i.e. the baseline method) actually worsens performance. Using both of
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Figure 4: MB detection samples with our method and the baseline on Sintel (clean) with
SMUREF input. Main differences are highlighted by red ovals.

GT MB Baseline Edge Map

them with hysteresis improves over M,,; in both passes of Sintel. The ablation study on the
impact of using backward flow on MB detection is shown in the supplementary material.

Baseline Map M,,4) | +Map M, | +Map Mz, | Ours (+M.+M;g,)
Clean 70.3 39.7 49.7 74.5
Final 63.5 42.5 54.2 67.4

Table 2: Performance of MB detection () of our proposed hysteresis scheme with different
map combinations. Input flow is estimated by SMURF [41].

4.3 Flow Replacement

Table 3 shows the effects of our flow refinement over the flow estimates on points in the
replacement set P. We consistently improve estimates over all datasets.

Figure 5 shows before/after flow quiver plots in two examples. Red vectors are in P. In
the Sintel example, the set P is in the background and close to the true MB. In the KITTI
example, the set P appears to be moved from the true MB (KITTI has no ground-truth MB
labels). However, flow estimates in P are still perturbed by the running car with larger
motion. Replacement improves flow estimates in both cases.

Input Flow | Dataset Input Flow Replaced Points
AEPE % of MB points | Init AEPE | Our AEPE +

Clean 4.18 51.02 12.81 10.84 15.38%
LDOF [3] Final 6.25 33.24 13.68 11.28 17.54%
KITTI 19.63 - 44.95 43.76 2.65%
Clean 2.79 48.13 9.52 7.90 17.02%
ARFlow [24] | Final 3.70 34.16 8.96 7.42 17.19%
KITTI 3.46 - 19.29 18.62 3.47%
Clean 2.03 61.28 5.47 517 5.48%
SMUREF [41] | Final 2.90 39.98 5.71 4.72 17.34%
KITTI 1.94 - 15.35 14.69 4.30%

Table 3: The average EPE and average EPE improvement with our replacement method near
our estimated MBs on the flow estimates by different flow estimators. Note the ARFlow uses
3 frames to estimate the flow. About 1% of all MPI Sintel pixels are true MB points. This
information is unknown for KITTI, which has sparse ground truth flow.
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GT flow

Input flow Refined flow

Sintel
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Figure 5: Two examples of flow (quiver plots with flow down-scaled by 70) before and after
replacement on set P (red vectors). Input flow is from SMUREF [41]. On these two patches,
replacement decreases the AEPE from 24.62 to 3.40 pixels per frame for the Sintel example
and from 33.23 to 16.87 pixels per frame for the KITTI example.

Impact of MB quality on replaced flow: Table 4 (top half) shows that better MBs
lead to better flow replacement on Sintel (clean). This pattern is less clear on the final pass
(bottom half), where improvements are comparably large regardless of the quality of the
MBs. This is likely because the estimated flow is generally worse on Sintel final, especially
near MBs, so there is more room for improvement by replacement.

Dataset Ours (LDOF) | Ours (AR-Flow) | Ours (SMURF) | GT
Clean MB (F1) 59.2 64.3 74.5 100.0
EPE | (%) 0.02 0.75 5.48 7.72
Final MB (F1) 51.2 57.1 67.4 100.0
EPE | (%) 17.51 22.50 17.34 20.94

Table 4: Impact of MB quality (by F1) on the performance of flow replacement algorithm
on Sintel clean and Sintel final. The flow performance is evaluated on the replacement set P
and the input flow is from SMURF [41]. The last column “GT” uses ground-truth MBs.

5 Conclusion

We propose a method that both detects MBs and improves flow estimates near them. The
method is plug-and-play and requires no supervision. Fundamentally, it exploits the fact that
it may be fruitful to replace a flow vector near a MB with one taken from a pixel that is
farther away. This is useful because the error in taking the flow vector from the wrong point
is on average smaller than the error caused by proximity to a MB. Figure 1 (right) shows that
this balance is favorable on average, and our method exploits that margin fully. Of course,
the Figure also shows that the benefit is bounded, and our analysis elucidates the trade-offs.
Future work will address methods to tackle the flow estimation error near MBs directly.
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