

Unsupervised Flow Refinement near Motion Boundaries Shuzhi Yu, Hannah H. Kim, Shuai Yuan, Carlo Tomasi

Introduction

- The **average** End-Point Errors (EPEs) of top flow estimators can be as accurate as sub-pixels
- Flow estimates worsen near Motion Boundaries (MB), for both supervised and unsupervised estimators (right plot)
- Our goal is to improve the flow estimates near MBs under unsupervised setting
- We first detect MBs and then refine flow near them

Method – Motion Boundary Detection

- Input: Three consecutive frames, and forward and backward flow estimates (from middle frame) by an unsupervised flow estimator
- Detects MBs by a hysteresis thresholding method from three feature maps: Image edge map, motion discrepancy map, proposed map of invalid smooth motion
- Map of invalid smooth motion: Different matching costs for patch. a and patch c where the motion should not be smooth

Observation 1: Changes of appearance of the blue patch is more consistent with the blue motion than with the red motion, vice versa.

Observation 2: The estimation errors of flow on the two sides are asymmetric. Point a and c reside on the two sides of a MB.

Result

Our method consistently outperforms the baseline (BL) method with different input flows

			SMURF [41]			AR-Flow [24]			LDOF [3]		
			Flow	BL	Ours	Flow	BL	Ours	Flow	BL	С
			(EPE)	(F1)	(F1)	(EPE)	(F1)	(F1)	(EPE)	(F1)	(
	tel	Clean	2.01	70.3	74.5	2.79	53.1	64.3	4.18	54.8	5
	Sin	Final	2.87	63.5	67.4	3.73	48.5	57.1	6.25	46.7	5

Table 1: *F*₁-score for **MB** estimation with different input flow estimates, compared with the baseline method (BL). SMURF [41] and AR-Flow [24] are two top unsupervised flow estimators, and LDOF [3] is a top classical flow estimator.

Department of Computer Science, Duke University

