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Introduction

● Hierarchical Image-Text Contrastive 
(H-ITC) objective aligns the cross 
modal representation at different 
layers of the unimodal encoders. 

● MAE-based Masked Image Modeling 
(MIM) objective that leverages MAE 
[1] for VLP, by reconstructing masked 
image tokens.

● Visual Concepts Module that  
leverages image-level annotations 
(Visual Concepts-VCs) using CLIP [2], to 
enrich the visual representation.

Finetuning on COCO and Flickr30K Image-Text Retrieval

Finetuning on VQA v2 NLVR2 and SNLI-VE

Paper, code, and data are available: 
https://github.com/mshukor/ViCHA
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Contributions

● Current Vision-Language Models 
are trained on large datasets, 
which need huge computation 
infrastructure.

● Other paths are also promising; 
training objectives, model 
architectures and the quality of 
data.

● How can we learn  from less 
data? 
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● Contributions:
○ H-ITC 
○ MAE-MIM
○ Visual 

Concepts 
Module

Method Results
ViCHA consists of and image encoder (ViT), text encoder (6-layer BERT) and multimodal decoder (6-layer BERT + CA), trained 
on 4 main objectives; H-ITC, ITM , MLM and MIM on Image-Text pairs datasets:

We pretrain on COCO, 
Visual Genome and 
SBU and then 
finetune on VQA v2, 
SNLI-Ve, COCO and 
Flickr30K retrieval, 
and visual grounding.


