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A Appendix
The Appendix is organised as follows; in section A.1, we give more details about the down-
stream tasks and how we finetune the model on them, then in section A.2, we elaborate on the
implementation details used to train ViCHA. We do more ablation study in section A.3. We
show the results of training ViCHA on 4M images in section A.4 and additional experiments
on data filtering in section A.5. We discuss some aspects of the paper in section A.6 and
conclude the appendix in section A.7 by showing some qualitative results on visual grounding,
VQA and some limitations of VCs.

A.1 Downstream Tasks
We mainly follow the evaluation setup of ALBEF [19]. During finetuning, the image resolution
is increased to 380. We use 4 GPUs for Image-Text retrieval and 2 GPUs for other tasks.

Image-Text Retrieval consists of finding the image that corresponds to a given text or
vice-versa. We finetune and evaluate on MSCOCO [23] with Karpathy split [15] (113k/5k/5k
as train/validation and test set) and Flickr30k [27] (29k/1k/1k). We extract the visual concepts
from the training set of these datasets. We train using ITM and ITC objectives and evaluate
by selecting top m examples from the global similarity at the output of the dual encoders
then re-ranking these examples using the multimodal encoder. We finetune the model for 10
epochs with batch size 64 (16 per GPU), learning rate that decays from 1e−5 to 1e−6 using
cosine annealing scheduler.

Visual Question Answering (VQA) consists of answering a question based on an image.
We finetune on VQA v2 dataset [11] that contains images from COCO and is split as
83k/41k/81k images for train/validation/test. The visual concepts are extracted from the
COCO training set. We consider the task as a generation problem constrained to the set
of possible answers. We add a 6-layer transformer decoder initialized by the pretrained
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multimodal encoder, which generates the answer based on the output of the multimodal
encoder. We train on the train and validation set and did not include additional question
and answers from Visual Genome as done in other work [3, 19], as it slows significantly the
training. We finetune for 8 epochs, batch size 32 (16 per GPU), learning rate 2e−5 warmed
up to 1e−5 and decayed using cosine scheduler to 1e−6.

Visual Entailment (SNLI-VE) [35] is a visual reasoning task where given an image and a
sentence the model should predict if the sentence is a contradiction, neutral or entailment to
the image. We train on SNLI-VE [35] dataset, which is based on SNLI [1] and Flickr30K and
consists of 30K images for training and 1k for evaluation and test. The visual concepts are
extracted from the training set of Flickr30k. We regard this task as a three-way classification
and we add a classification head on top of the [CLS] token of the mulltimodal encoder,
consisting of 2 fully connected layers with ReLU activation in between. We train for 10
epochs with batch size 32 (16 per GPU) and initial learning rate 2e-5.

Natural Language For Visual Reasoning (NLVR2) [33] is another visual reasoning task.
The model should predict if a sentence describes the 2 input images. We consider the task as
a binary classification task and we replicate each layer in the multimodal encoder so that the
encoder can accept 2 images instead of 1, the replicated layers are initialized from the original
ones and the linear projection of the keys and values of the cross attention layers are shared
between the original and the replicate. The visual concepts are extracted from the sentences
of the NLVR2 training set. The prediction is obtained from a classification head on top of
the multimodal encoder’s [CLS] token. We pretrain the model on the pretraining corpus for
additional 1 epoch on a classification task (text assignment) that consists of assigning the
test to either one of the 2 images or non of them [19]. We finetune the model on [33] for 10
epochs, batch size 16 (8 per GPU) with initial learning rate 2e-5.

Visual Grounding Consists of matching a text query to the corresponding image region.
Here we evaluate our approach in a weakly supervised manner where we only use the textual
query/caption without using bounding boxes. During training, we train with ITC and ITM
loss as we do for retrieval, and during inference we use Grad-CAM [30] to rank the proposals
from [39]. We evaluate on the RefCOCO+ dataset [38] which contains 140K expression
for 20K images collected from the training set of COCO. The model is trained for 5 epochs
without random cropping and initial learning rate of 1e−5. The batch size is set to 32 (16 per
GPU).

A.2 Implementation Details
Here we describe additional implementation details to train ViCHA. The visual encoder is
ViT-B/16 [6] initialized with DeiT pretrained on ImageNet [34], the text encoder is the first 6
layers of BERT-base [5] and the multimodal encoder is the last 6 layers of BERT-base. Evc is
the first 2 layers of BERT-base. We extract 15 concepts for each image and we set pvc=30%
for VCA. For H-ITC loss, we set λH−ITC = 0.1 and align the last 6 layers of Ev with all 6
layers of El . For U-MIM, we use 2-layer transformer encoder with 16 heads and set λMIM = 1.
The hidden dimension is 768 and kept constant across all modules, the embedding dimension
is 256. For the momentum model, the momentum is set to 0.995 and the queue size to 65536.
The learned temperature is initialized to 0.07. The images are randomly cropped to 256×256
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during pretraining. We use AdamW [24] with learning rate 1e−5 that is warmed up during
the first 2K iterations and then decreased using cosine schedule.

A.3 Ablation Study
In this section, we investigate the importance of different design choices. We follow other
approaches [8, 36] and finetune only on Flickr30K and VQA. We compare against ALBEF∗

(Baseline) trained on the same setup described in Section in the main paper We keep the
image resolution as in pretraining (256).

U-MIM M-MIM
Flickr30K (1K test set) VQA

TR IR test-dev
R@1 R@5 R@10 R@1 R@5 R@10 RSUM Acc.

Baseline 85.8 97.4 98.5 70.2 89.9 94.0 535.8 71.1

✓ 88.6 97.6 99.2 72.3 91.1 94.8 543.6 71.8
✓ 86.8 96.4 98.5 71.8 90.8 94.7 539.0 71.8

✓ ✓ 87.4 97.6 99.2 71.4 90.8 94.6 541.0 71.9

Table 1: Ablation study on MIM objective.

Masked Image Modeling: Table 1 shows the advantage of using MIM objective. Contrary
to the results reported in other approaches [8], we find that MIM based on the MAE objective
brings additional improvements in both cases (U-MIM +7.8% and M-MIM +3.2% RSUM).
In addition, we found that the unimodal MIM outperforms the multimodal one. This may be
due to the interchange between the text and image tokens as query to the multimodal decoder.
However, using M-MIM with a decoder that takes the image tokens or both image and text
tokens as query could lead to better performance. We tried also to combine both objectives, but
we did not notice a significant improvement (+8.8% RSUM and +0.9% VQA). Nonetheless,
these results reveal the importance of using MIM and SSL objectives for VLP, especially SSL
with the unimodal encoders, as it seems improving the unimodal representation lead to better
cross-modal alignment.

VCs VCs Flickr30K (1K test set) VQA
corpus corpus TR IR test-dev

size R@1 R@5 R@10 R@1 R@5 R@10 Acc.

Baseline - 85.8 97.4 98.5 70.24 89.9 94.02 71.15

4OD 6.1K 86.7 97.6 99.4 72.5 91.68 95.12 71.27
ViCHA 206.5K 87.6 97.6 99.3 74.0 91.56 95.34 71.57

Table 2: Ablation Study: Source of Visual Concepts.

Source of VCs: How the visual concepts are gathered could affect the performance. This
is shown in Table 2, where we assess the source of VCs. We found that having a large pool
of noisy concepts extracted from captions is better than using a smaller and cleaner pool of
concepts extracted from the classes of several object detection datasets (i.e, Visual Genome,
OpenImage 6, Objects365 and COCO) . However, the number of VCs can be reduced as
discussed in Section A.6.
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VCs Flickr30K (1K test set) VQA
Extraction TR IR test-dev

Method R@1 R@5 R@10 R@1 R@5 R@10 Acc.

Baseline 85.8 97.4 98.5 70.24 89.9 94.02 71.15

VinVL 88.4 98.3 99.3 73.22 92.56 95.54 72.75
CLIP 89.3 98.3 99.3 76.98 93.36 95.86 72.46

Table 3: Ablation Study: Extraction of Visual Concepts.

Visual Concepts Extraction Method: Here we show the importance of using our CLIP-
based approach for VCs extraction compared to other approaches based on object detectors
(e.g. VinVL [42]). Table 3 shows that VCs extracted with CLIP give better performance on
retrieval and slight degradation on VQA. This might be due to the fact that CLIP excels in
retrieval tasks and echos this bias to the extracted VCs. Importantly, with both approaches,
we still get better results than the baseline. This validates that the improvement is not coming
only from the large scale pretraining of CLIP.

Evc’s Flickr30K (1K test set) VQA

# of layers
TR IR test-dev

R@1 R@5 R@10 R@1 R@5 R@10 Acc.

Baseline 85.8 97.4 98.5 70.24 89.9 94.02 71.15

0 87.70 97.20 99.10 72.74 91.60 95.02 71.28
2 87.60 97.60 99.30 74.00 91.56 95.34 71.57
4 88.60 97.5 98.40 74.56 92.64 95.54 71.69

Table 4: Ablation study: size of the Visual Concepts Encoder.

Size of the Visual Concepts Encoder (VCE): Having a larger VCE can help to project
the VCs to the image patch embedding space and embed VCs more effectively. This is
supported by the results in Table 4, showing that increasing the VCE size helps to get better
improvements. However, we favor to keep the model simple and use only 2-layers encoder.

pvc %
Flickr30K (1K test set) VQA

TR IR test-dev
R@1 R@5 R@10 R@1 R@5 R@10 Acc.

100 % (No VCA) 87.6 97.6 99.3 74.0 91.6 95.3 71.6
50 % 88.5 97.5 99.0 75.6 93.3 95.4 72.2
30 % 89.3 98.3 99.3 76.98 93.36 95.86 72.46
10 % 89.1 98.4 99.6 75.56 92.78 96.3 72.43

Table 5: Ablation study: the percentage of Visual Concepts Augmentation (VCA) during pretraining.

VCA: Table 5 shows the effect of VCA. Reducing the percentage of randomly selected
VCs brings significant improvements. This might help the model to avoid relying too much
on them by showing different combination at each training step. Interestingly, reducing too
much the number of VCs (10 % or 1 concept/image) impedes the performance.
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Dataset Corpus size Examples

COCO 18K man, people, street, pizza, laptop, baseball player, tennis court, dogs, rain, bicycles, computer keyboard, airport runway
VG 78.5K person, sky, grass, giraffe, airplane, street light, license plate, coffee table, tennis shoes, clothes, sunlight, orange shirt
SBU 110K house, water, beach, background, office building, kitchen window, netherlands, street signs, eiffel tower, mississippi river, architecture, computer desk

Table 6: VCs corpus for each dataset.

A.4 Experiments on 4M images
In this section, we train ViCHA on 4M images and compare it with other SoTA. We follow
the same implementation details described in the main paper except the following (to have a
fair comparison with other work [19]); we add CC3M [31], pretrain for 30 epochs using 8
GPUs, during Finetuning we increase the image resolution to 384 for VQA and NLVR2, we
use additional Visual Genome questions for VQA.

Results: Figure 7, shows that ViCHA outperforms state of the art models on most of the
tasks (i.e., VQA, NLVR-dev, F30K R@1 TR, MSCOCO R@1 TR) and competitive on other
tasks. This validate the effectiveness of the proposed approach, however, the improvement is
larger on low data regime (1M images) as shown in the main paper.

Method
# Pre-train VQA NLVR2 SNLI-VE Flickr30K (1K test set) MSCOCO (5K test set)

Images test-dev test-std dev test-P val test TR IR TR IR
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

ViLBERT [25] 3M 70.55 70.92 - - - - - - - 58.2 84.9 91.5 - - - - - -
l2-in-1 [26] 3M 73.15 - - 78.87 - 76.95 - - - 67.90 - - - - - 68.00 - -
ERNIE-ViL [37] 3.8M 73.18 73.36 - - - - 86.7 97.80 99.00 74.44 92.72 95.54 - - - - - -
ImageBERT [28] 6M - - - - - - 87.0 97.6 99.2 73.1 92.6 96.0 66.4 89.8 94.4 50.5 78.7 87.1
Unicoder-VL [18] 3.8M - - - - - - - - - - - - 62.3 87.1 92.8 46.7 76.0 85.3
UNITER [3] 4M 72.70 72.91 77.18 77.85 78.59 78.28 87.3 98.0 99.2 75.6 94.1 96.8 65.7 88.6 93.8 52.9 79.9 88.0
OSCAR [21] 4M 73.16 73.44 78.07 78.36 - - - - - - - - 70.0 91.1 95.5 54.0 80.8 88.5
VILLA [10] 4M 73.59 73.67 78.39 79.30 79.47 79.03 87.9 97.5 98.8 76.3 94.2 96.8 - - - - - -
UNIMOB [20] 4M+1.7M 73.79 74.02 - - 80.00 79.10 89.70 98.40 99.10 74.66 93.40 96.08 - - - - - -

ViLT [16] 4M 70.94 - 75.24 76.21 - - 83.5 96.7 98.6 64.4 88.7 93.8 61.5 86.3 92.7 42.7 72.9 83.1
ALBEF [19] 4M 74.54 74.70 80.24 80.50 80.14 80.30 94.3 99.4 99.8 82.8 96.7 98.4 73.1 91.4 96.0 56.8 81.5 89.2
COTS [? ] 4M - - - - - - 88.2 98.5 99.7 75.2 93.6 96.5 66.9 88.8 94.0 50.5 77.6 86.1
CODIS [9] 4M 74.86 74.97 80.50 80.84 80.47 80.40 95.1 99.4 99.9 83.3 96.1 97.8 75.3 92.6 96.6 58.7 82.8 89.7
TCL [36] 4M 74.90 74.92 80.54 81.33 80.51 80.29 94.9 99.5 99.8 84.0 96.7 98.5 75.6 92.8 96.7 59.0 83.2 89.9
MixGen [12] 3M 74.51 74.79 80.23 80.94 80.05 80.05 94.8 99.4 100 82.4 96.3 98.0 74.2 92.8 96.4 57.3 82.1 89.0

ViCHA 4M 74.99 75.07 80.84 80.44 79.92 79.35 95.2 99.1 99.8 82.56 95.56 97.88 77.16 93.18 96.68 58.82 83.21 90.20

Table 7: Comparison with SOTA; we report the accuracy on VQA, NLVR2, VE and R@K for Image-Text Retrieval.
ViCHA ouperforms SoTA on most of the tasks.

A.5 Data Filtering
The growing size of image-text datasets scraped from the internet comes also with a growing
amount of all kinds of accompanying noise. Even though, the presence of noise is not a major
issue for extremely large datasets, the need for efficient data filtering techniques becomes
inevitable when considering small to medium scale data regimes.

Many existing works focus on filtering the dataset from noise based on handcrafted filters
[2, 4, 31]. Despite being effective, here we rather focus on selecting the best examples or
image-text pairs for the underlying alignment task.

We propose a simple yet effective technique that selects the best image-text pairs based on
the CLIP cosine similarity. This technique, can also cope with noisy and corrupted captions,
as these captions have low similarity scores compared to the image. In addition, some captions
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Model
dataset Flickr30K (1K test set) VQA

percentage % TR IR test-dev
COCO VG SBU R@1 R@5 R@10 R@1 R@5 R@10 Acc.

ALBEF∗

100 100 100 85.8 97.4 98.5 70.24 89.9 94.02 71.04
100 50 100 86.1 97.3 99.1 72.7 91.92 95.34 71.58
100 15 100 86.8 97.3 99.2 71.94 91.34 95.02 71.17
100 50 50 88.5 97.6 99.1 72.38 91.52 95.12 71.38
100 50 70 88.5 97.6 99.1 72.16 91.78 95.3 71.55

ViCHA

100 100 100 89.7 98.6 99.8 75.78 93.46 96.54 72.55
100 50 100 89.4 98.1 99.7 76.3 93.6 96.6 72.36
100 50 70 88.2 98.1 99.5 75.66 93.22 96.26 72.41

Table 8: To see later if we include all these results (with 15% of vg, ViCHA seems useless) CLIP-based
data selection/filtering results: we ablate the choice of the selection percentage for each dataset.

are hard to align, especially when describing a small region of the input image that can be
potentially removed with augmentation techniques (e.g. random crop). Moreover, it can filter
wrong captions that might be fetched from the internet. Thus, we argue that noise filtering is
not enough to have good captions, as they ignore the level of correspondence between the
image and the caption. This data selection technique is similar to what have been proposed in
[29], however they use a fixed and manually selected threshold, while here we select top p %
pairs. We use the terms data selection and filtering interchangeably.

CLIP-based data selection: We use CLIP-ViT/B-16 to compute the image features, and
the corresponding text encoder to compute the text features of the corresponding caption. We
compute the cosine similarity for all pairs then we select the top p % of the pairs for training.

Experimental Results: Table 8 shows the results of applying this technique to ALBEF∗

and ViCHA. We consider COCO as a clean dataset as it is manually annotated for image
captioning, and focus on Visual Genome (captions that describe small regions in the image)
and SBU (noisy captions). For Visual Genome, we filter only the captions (e.g., 50 % of the
captions for each image). In the case of ALBEF∗, we notice that the using all the captions
in the Visual Genome (VG) dataset harm the performance, as the results are significantly
better when training only with 15 % and 50 % of the caption for each image. We obtain
comparable performance when training on 50 % or 70 % of SBU. In the case of ViCHA, we
have a comparable results to training on all data when training with 50 % VG and 70 % of
SBU.

A.6 Discussion

Visual Concepts: We show (in the main paper) that VCs can capture high level, global and
some aspects in the scene that can not be shown explicitly or detected by other techniques
(e.g., Object detectors as in OSCAR [21]).

However, our approach is far from being perfect. We show some limitations in Figure 3,
where the VCs can be (a) redundant, (b) wrong, due to some biases in the dataset, (c) lacking
the ability of capture local objects and (d) inherit the noise from the captions.
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There are several reasons for these limitations; (a) The poor (naive) text/captions fil-
tering techniques that we adopt which keep a lot of redundant (e.g. plural vs singular,
prefixes/sufixes...) and noisy concepts, (b) the retrieval model (CLIP) that is trained for global
representation alignment (matching class tokens) which hinders the ability to grasp local
concepts. (c) the biases that can be included in the unknown training dataset of CLIP, which
cause the model to capture wrong/hallucinated concepts, and finally (d) the limitation of the
Scene Graph Parsing technique that we use.

These limitations can be addressed for example by; using some advanced text filtering
techniques and eventually a model trained for more finegrained alignment on large unbiased
dataset.

Model size: Another aspect that can help in low data regime, and we little investigate in
this work (e.g. Table 4), is the size of the model. Recent work [13, 14, 17, 41] show that
bigger models are more data/sample efficient. However, in this work we put forward model
simplicity and keep this study for future work.

Comparability of existing methods Despite being common to compare different VLP
models, a lot of these models are not comparable due to different design choices, such as;

• The model: size such as base vs large for transformers, single [19] vs double [8]
multimodal decoders. Different unimodal encoders and initialization; Roberta [8] vs
BERT [19], Swin [7] vs CLIP [8, 32] vs ViT [19].

• Pretraining dataset: number of images (200K vs 4M vs 14M...), number of image-
caption pairs (e.g. for 4M images: 5M [9, 19, 36] vs 10M [8, 16]). The type/level of
annotations used (e.g., bounding boxes [7, 22, 40]).

• Number of epochs: e.g., 10 [8] vs 30 [9, 19, 36].

• Batch size: which is important especially with contrastive learning (e.g., 4096 [8, 16]
vs 512 [19, 36]).

For this reason we argue that the best way to assess a given method is to re-implenment or
re-train other models with the same setup as the proposed one.

A.7 Qualitative Results
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Vision Encoder Text Encoder

Visual Concepts Extraction

Multimodal 
Decoder

‘fly ball’ ‘ ‘batter swinging’ ‘pitching pose’ 
‘sidearm pitch’ ‘throwing position’...

is the ball flying 
towards the batter?

yes

Vision Encoder Text Encoder

Multimodal 
Decoder

is the ball flying 
towards the batter?

Vision Encoder Text Encoder

Visual Concepts Extraction

Multimodal 
Decoder

‘woman crouches’ ‘waiting station’ ‘people’  
‘woman grimaces’ ‘subway platform’ ‘mobile 

phone’ …

what is the woman 
doing?

Vision Encoder Text Encoder

Multimodal 
Decoder

what is the woman 
doing?

no

talking on phone sitting

Figure 1: VQA results: comparison with and without using VCs

"little" "pink shirt" "standing" "sculpture"

"A little girl in a pink shirt standing near a blue metal sculpture"

"pot" "beef" "brocolli" "stew"

"A pot full of beef and broccoli stew"

"man" "black shirt" "elephant" "walks"

"A man in a black shirt rides an elephant as a man walks near it down a street"

Figure 2: Visualization of the Grad-CAM corresponding to different words in the caption. The model
is finetuned on RefCOCO+ and the images are from COCO test set. The model can accurately localize
the objects mentioned in the caption, and also works well with specialized domains, such as food.
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((a)) Dataset: COCO
Caption: ’a woman riding a bicycle by two buildings’.
VCs: ’bicycle riding’, ’bicycle ride’, ’bicycle rides’, ’bicycle rack’, ’bicycle basket’,
’bike carriage’, ’bicyclist’, ’delivery bicycles’, ’bicycle cart’, ’biking’, ’bicyclist rides’,
’bicyclists’, ’bicycle rider’, ’bike riding’, ’bicycler’

((b)) Dataset: COCO
Caption: ’A black and white cow and a man are in the water.’
VCs: ’bear splashes’, ’dog swimming’, ’bear swimming’, ’water buffalo’, ’animal
swimming’, ’holstein cow’, ’border collies’, ’bear diving’, ’elephant swimming’, ’calf’,
’collie dog’, ’border collie’, ’retriever dog’, ’bull dog’, ’splash’

((c)) Dataset: COCO
Caption: ’A computer is sitting on a computer desk on the far side of the room.’
VCs: ’type bedroom’, ’bedroom space’, ’home bedroom’, ’room combination’, ’room
arrangement’, ’house bedroom’, ’bedroom furniture’, ’bedroom area’, ’studio apart-
ment’, ’living someones room’, ’someones bedroom’, ’bedroom scene’, ’bedroom
setup’, ’college dorm’, ’room scene’

((d)) Dataset: SBU
Caption: ’Kevin is the cutest boy in the world. He BAKED Chris this cake and
decorated it, penis and all!’
VCs: ’4.1.2011from’, ’7/12/2009 view’, ’rpop-2008’, ’rpop-2007’, ’birthday candles’,
’—cake’, ’cake candles’, ’trick candles’, ’birthday candle’, ’guitar cake’, ’2009.com-
pliments’, ’hat cake’, ’2/21/2010’, ’boy baby cake’, ’may,09’

Figure 3: Illustration of some limitations of VCs; (a) redundancy, (b) wrong VCs, (c) lacking local VCs
and (d) noisy VCs.
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