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Abstract
Face animation aims at creating photo-realistic portrait videos with animated poses

and expressions. A common practice is to generate displacement fields that are used to
warp pixels and features from source to target. However, prior attempts often produce
sub-optimal displacements. In this work, we present a geometry driven model and pro-
pose two geometric patterns as guidance: 3D face rendered displacement maps and posed
neural codes. The model can optionally use one of the patterns as guidance for displace-
ment estimation. To model displacements at locations not covered by the face model
(e.g., hair), we resort to source image features for contextual information and propose
a progressive warping module that alternates between feature warping and displacement
estimation at increasing resolutions. We show that the proposed model can synthesize
portrait videos with high fidelity and achieve the new state-of-the-art results on the Vox-
Celeb1 and VoxCeleb2 datasets for both cross identity and same identity reconstruction.
Our code is available at https://github.com/yataoz/face_reenact_GDPW.

1 Introduction
Face animation refers to the task of creating photo-realistic portrait videos with animated
facial motions. The task starts with a source portrait image and a sequence of driving face
poses and expressions. For each frame in the output video, a face animation model generates
a new portrait image with the same pose and expression as the driving face while still pre-
serving the source identity and appearance (see examples in Fig. 1(a)). In the early days of
research, solutions often rely on purely graphics and geometry [5, 10, 31, 32]. They utilize
face geometries such as facial landmarks and reconstructed 3D face models to guide face
deformation. However, image synthesis in those early works is non-learning based and of-
ten resorts to handcrafted image blending heuristics, hence fails to produce photo-realistic
output.

Recently with the rapid advance in image synthesis using deep neural networks, many so-
lutions switch to a learning-based paradigm where they directly operate in the feature space
of source images and warp features to achieve facial motion transfer and identity preserva-
tion. However, prior works [8, 27, 40] attempt to predict the warping displacements directly
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(a) (b)

Figure 1: (a) Our model can be applied to several scenarios: face reenactment, face frontal-
ization and fine-grained face editing by pose, shape, expression and even eyes. (b) An
overview of the model. The left part shows the whole architecture. The right part shows
the proposed progressive warping module (PWM) at pyramid level l and how we estimate
the full displacement from the guiding geometric patterns.

from features in source image coordinates whereas the displacements are supposed to be in
the target image coordinates. This misalignment issue poses a challenge to them to generate
correct displacements.

With those considerations in mind, we ask how we can improve the quality of displace-
ment fields for face animation? We present a geometry driven model and propose two geo-
metric patterns as guidance: 3D face rendered displacement maps and posed neural codes.
The model can optionally use one of the patterns as guidance for displacement estimation.
To render the displacement maps, we first calculate the displacement vectors between cor-
responding vertices from a pair of source and driving meshes and then rasterize them to a
2-channel image. To create posed neural codes, we attach a latent embedding vector to each
vertex of the 3D face and rasterize the embedded mesh to a d-channel image, where d is the
embedding dimension. For choice of the 3D face model, we use FLAME [19], which is a
face counterpart of the blend-skinned body model SMPL [21]. Unlike other 3DMMs such
as the FaceWarehouse [3] and the Basel Face Model [26], FLAME also models articulated
jaw, neck and rotating eyeballs in addition to the disentangled shape, pose and expression
parameters, which makes it a more natural representation for face animation. To overcome
the spatial misalignment issue present in other 3DMM based models [8, 27, 40], we warp
source image features with the predicted displacement field at each pyramid scale and use
the warped features to estimate the displacement field at next pyramid scale. We repeat this
paradigm and progressively warp features and estimate displacements at increasing resolu-
tions.

To summarize, our work has the following contributions: 1) We propose a geometry
driven model whose displacement generation is guided by either displacement maps or posed
neural codes, both rendered with the FLAME face topology. 2) We design a progressive
warping module which alternates between displacement estimation and feature warping for
robust facial motion transfer. 3) We demonstrate that our method sets the new-state-of-art
through extensive experiments and provide our insight into the properties of the proposed
guiding geometric patterns by analyzing their individual impact on the model performance.
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2 Related Work
3D Face Based Warping Models. In early research of face animation, solutions often rely
on purely 3D face models. For instance, [5, 31, 32] start with 3D face reconstruction and use
parametric face models to control the face movement. However, image synthesis in those
early works is non-learning based and often resorts to some heuristic blending techniques,
hence fails to produce photo-realistic output. Later come the learning-based solutions. [17,
37] first render synthetic face images with predicted texture and lighting, which are then
used as input to deep networks to create images with better realism. PIRender [27] encodes
the 3DMM pose parameters into an embedding vector and uses that as modulation in AdaIN
layers [14] to estimate the displacement field for face deformation. HeadGAN [8] shares
a similar idea but uses a 3D face image as the source of modulation in SPADE layers [25]
for displacement generation. [40] creates an approximate flow with the 3D face model for
initial warping and the warped image is refined by another generator to create a more realistic
image.

Keypoint Based Warping Models. Warp-Guided GANs [11] track the facial landmarks
and use them to create a global displacement map for image warping. Subsequently the
warped image is fed to a face refinement network to generate final image. Facial landmarks
are also used in MarioNETte [12] to create a global displacement map, but here warping op-
erates in the feature space instead of image pixels. Another line of work under this category
includes an ad hoc keypoint detector in the model, which is trained without direct supervi-
sion [28, 29, 35]. The keypoints are implicitly learned by the model and may not convey any
interpretable meaning to humans. The displacement between each pair of keypoints controls
a local motion transformation. A dense motion network is used to predict the weighting
coefficient of each keypoint displacement in order to create a global warping field. Mon-
keyNet [28] is one of the first works that go in the direction of latent keypoint representation.
Follow-up works such as FOMM [29] and 3D-FOMM [35] improve MonkeyNet [28] with
first-order motion modeling and extend it from 2D to 3D respectively.

Pose-to-Face Mapping Models. Pose-to-Face refers to a class of models that transform
input directly from pose encoding to face images without considering the geometry such as
facial landmarks or 3D face models. They share the same spirit of pix2pix [15] and vid2vid
[33, 34]. X2Face [36] is one of the first works in this direction. They have an embedding
network that encodes the source identity and a driving network that uses the driving pose
and embedded source face to synthesize the new face image. Bi-layer model [39] shares
the similar idea of embedded face, but they have a two-stage implementation for coarse-to-
fine refinement. [38] encodes an image drawn with landmarks of driving face and uses the
source image features injected in AdaIN [14] to generate output. Similar to [38, 39], LSR
[22] is also driven by a landmark encoded image, but LSR uses a second network trained for
semantic segmentation to guide the decoder to generate better quality images. Head2Head
[18] proposes a person-specific model that goes directly from driving 3D face to output
image without any feature extraction from source identity. Therefore, their model does not
generalize.

3 Proposed Method
We start by fitting the FLAME face model [19] to the input images (Sec. 3.1). To embed
FLAME in our model and utilize its geometric information to guide facial motion transfer,
we use one of the geometric patterns: the FLAME mesh rendered displacement map or the
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posed neural codes. Either acts as guidance to estimate the full displacement field used for
feature warping (Sec. 3.2). Afterwards we apply a novel progressive warping module and
alternate between feature warping and displacement estimation to generate output images.
(Sec. 3.3).

3.1 3D Face Representation
To obtain full control over the animated facial motions, we need a latent face descriptor that
is compact yet expressive. In this work, we employ FLAME [19] as the underlying face
representation due to its capability of modeling articulated joints (jaw, neck and eyeballs)
and disentangled parameterization of shape β , pose θ and expression ψ . FLAME deforms
face geometry by vertex based linear blend skinning (LBS) with corrective blendshapes. We
refer readers to [19] for detailed explanation of the FLAME formulation.

Given a source portrait image Is that we want to animate, we use DECA [9], an off-
the-shelf 3D face reconstruction model, to fit the FLAME face geometry. The output of the
fitting pipeline is the shape βs, pose θs and expression ψs for the source image Is, with which
we can reconstruct a FLAME mesh Ms. In order to animate the source face with customized
facial movement, we can change the values of βs, θs and ψs to obtain the target shape βd ,
pose θd and expression ψd . By substituting the updated parameters into the FLAME model,
we now have the target 3D face mesh Md that will drive the movement of source face. In the
case of face reenactment where we want to transfer the facial motion from a driving portrait
image Id to the source image Is, we do an additional FLAME fitting to Id to generate the
driving 3D face mesh Md .

3.2 Geometric Patterns as Guidance
Our model is driven by facial geometry. We propose two geometric patterns that can guide
the displacement learning process. One is a 2-channel image rendered from the displace-
ment vectors between a pair of source and target face meshes, which we call the geometric
displacement field. The other is the posed neural codes, a d-channel image rendered from a
face mesh whose vertices are embedded with a set of d dimensional latent vectors. We now
describe the formulation of each of the geometric patterns.

Geometric displacement field. Given the source and driving face meshes Ms and Md ,
we calculate 2D displacement vectors Vd→s = P(Ms)−P(Md), where P(·) projects a mesh
to image space. For each vertex i, we take Vd→s,i as its vertex attribute. Since the mesh Md is
already triangulated, we can follow the conventional graphics pipeline for rasterization. Note
that we render the displacement vectors using the topology of driving mesh Md because our
goal is to warp features from the source image coordinates and place them in the target image
coordinates. We also do back-face culling to ignore any triangles that are invisible from the
viewing direction.

Posed neural codes. Geometric displacement field can assist with the full displacement
estimation but it mostly transfers the relative motion from source to target and does not
explicitly incorporate facial semantics. To enforce the full displacements conditioned on
facial semantics, we propose the posed neural codes.

For a FLAME model with N vertices, we define a set of d dimensional latent vectors
E = {e1,e2,e3, · · · ,eN} with ei ∈ Rd . We attach each vector ei to vertex i and obtain a mesh
embedded in RN×d . Similar to geometric displacement field, we rasterize a d-channel image
from the embedded mesh. Because the mesh topology is predefined and fixed, each vertex
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comes with semantic meaningfulness, hence the assigned latent vector too. A visualization
of the learned latent codes is available in Fig. 2. As can be seen, the front and back both
have symmetric coloring. The left and right possess similar color distribution patterns. They
suggest the facial semantics being well captured by the latent codes.

Figure 2: Visualized latent codes on the
FLAME manifold. Color encoding is obtained
from t-SNE. Similar colors indicate closer dis-
tance in the embedding space.

As opposed to geometric displacement
field, posed neural codes does not encode
relative motion directly. To recover this in-
formation, we render the latent codes with
the source and target meshes respectively
and provide both as input to the model. The
source rendered latent codes are concate-
nated with the source image as input to the
encoder. The target rendered latent codes
are used as guidance in the decoder (Fig.
1(b)). The rendering process is fully dif-
ferentiable and the latent codes are learned
along with the neural network parameters.

Learning the full displacement field. Although both geometric patterns encode accu-
rate facial geometry and motion transfer information, they do not model any surrounding
pixels outside the face or head region (e.g. hair). To address this issue, we propose to use
the geometric patterns as guidance to estimate the full displacement field. Imagine that we
already have the spatially re-aligned features from a preceding warping module (which we
will touch later in Sec. 3.3). Since the input features have been warped to align with the
driving pose in target image space, we adopt them for contextual information to fill in any
missing pieces that are not modeled by the 3D face. To accomplish this, we use either the
rasterized geometric displacement field or the posed neural codes as the modulation input to
a SPADE block [25] to guide the estimation of full displacement field (Fig. 1(b)).

3.3 Progressive Warping Module
The goal of estimating displacements is to warp the source features and rearrange them in
the target image space. However, many existing works often fail to generate displacement
vectors that point to the correct source locations because of the spatial misalignment issue
discussed in Sec. 1. We propose a plug-in feature re-sampling block that can warp the
source features to create new ones that are spatially aligned with the driving pose in target
image coordinates. The re-sampling block is repeatedly applied at increasing pyramid scales
to finally create a high-resolution displacement field. We term it the progressive warping
module, or PWM for short.

Fig. 1(b) shows an overview of the model architecture. Unlike existing methods that
employ a number of dedicated deep networks for feature extraction, displacement estimation,
image generation and image refinement and operate in a multi-stage pipeline, our model
implements a simple encoder-decoder structure. The decoder part adopts a sequence of
progressive warping modules for iterative feature warping and re-alignment, which assists
full displacement estimation at increasing resolutions.

Let L be the number of feature pyramid levels and l the index of the l-th level. The PWM
starts from the lowest resolution at level l = 1 in the decoder and gradually moves to the
highest resolution at l = L. As shown in Fig. 1(b), at each pyramid level l, the guidance map
(geometric displacement field or posed neural codes) is resized to match the resolution at
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level l and injected into a SPADE block [25] to modulate the re-aligned features F(l)
r from a

preceding PWM. The SPADE output is followed by a convolutional layer to predict the full
displacement field D(l), which is up-sampled and used to warp the shortcut features F(l+1)

s
from encoder. The warped features are concatenated with the other route of the SPADE
output to create a set of new spatially re-aligned features F(l+1)

r , which will be used by the
PWM at next level. A final convolutional layer is added on top of the last PWM to synthesize
the output image Io.

A sequence of L PWMs are employed so that we are able to generate high resolution
displacement fields and features to animate portrait images. A special case is the initial PWM
at the lowest resolution, where no re-aligned features from a preceding PWM is available.
We go around this by skipping the SPADE and displacement estimation components. If the
guidance map is the geometric displacement field, we directly adopt it (resized to match the
corresponding resolution) to warp the encoder features F(1)

s , which are concatenated with
the original F(1)

s to produce F(1)
r . If the guidance map is posed neural codes, we use F(1)

s to
produce F(1)

r without any warping in between.

3.4 Implementation

During training, we perform self-reenactment and same identity reconstruction. For each
video, we randomly sample a pair of source and driving frames and train the model with
VGG-19 [30] based perceptual loss [16], Patch-GAN [15] and Hinge loss [20] based adver-
sarial loss, and discriminator feature matching loss between the real images and the synthe-
sized images. We use d = 16 as the latent code dimension and 5 pyramid levels for feature
warping and re-alignment. We enable spectral normalization [23] for all convolutional layers
in the model (including discriminator). We optimize the model with ADAM for 270k itera-
tions. The training starts with an initial learning rate of 2×10−4 and decreases to 2×10−5

at 80k iterations and to 2×10−6 at 160k iterations. Implementation details of network archi-
tecture and training loss functions can be found in the supplementary material.

4 Experiments

4.1 Datasets and Baselines

We use the VoxCeleb1 dataset [24] for training, which contains more than 20k talking-head
videos of over 1000 celebrities. We use the original train/test split provided by the authors to
train and evaluate the proposed model. As a pre-processing step, we follow [27, 29] to crop
the face and resize it to 256x256. We also fit the FLAME face model offline to all videos
using DECA [9]. We also evaluate the VoxCeleb1 trained model on the VoxCeleb2 dataset
[4], which contains 5 times more identities than VoxCeleb1. We go through the same steps
for data pre-processing and use the test split of VoxCeleb2 for evaluation.

The proposed model has two main variants depending on the geometric pattern in use:
geometric displacement field or posed neural codes, denoted by “PWM + geom. disp.” and
“PWM + neural codes” respectively. We compare both model variants with the state-of-the-
arts including HeadGAN [8], PIRender [27], FOMM [29], 3D-FOMM [35], Bi-Layer [39],
LSR [22] and X2Face [36]. For all models except HeadGAN and 3D-FOMM, we adopt
their officially released models for evaluation. Since no pre-trained model is available for
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HeadGAN, we follow its implementation details in [8] and train the model with FLAME
as the underlying 3DMM. For 3D-FOMM, we use an unofficial implementation from [1].
However, as noted by [1], they improve the original 3D-FOMM [35] by adding SPADE
blocks [25] in the decoder. Some baselines [22, 27, 36, 39] are originally designed for few-
shot scenarios. To match our test configuration, we tested their models in one-shot setting
using a single frame without finetuning on test subjects. All models except Bi-Layer [39]
are trained on VoxCeleb1, which is trained on the larger VoxCeleb2 dataset. We benchmark
all models on both VoxCeleb1 and VoxCeleb2.

Table 1: Quantitative results. Best performing metric is shown in blue
VoxCeleb1

Same Identity Reconstruction Cross Identity Reconstruction
FID ↓ CSIM ↑ AKD ↓ AED ↓ APD ↓ FID ↓ CSIM ↑ AED ↓ APD ↓

X2Face 36.02 0.532 10.94 0.201 5.189 51.14 0.437 0.297 7.421
Bi-Layer 79.05 0.580 3.11 0.129 0.866 87.54 0.461 0.230 1.493
LSR 20.53 0.311 2.73 0.153 1.012 28.04 0.229 0.217 1.606
FOMM 10.87 0.788 2.25 0.087 0.688 30.84 0.562 0.218 1.612
3D-FOMM 5.47 0.792 2.23 0.091 0.770 22.34 0.605 0.247 2.149
HeadGAN 10.72 0.779 3.80 0.087 1.097 25.79 0.505 0.234 1.849
PIRender 9.47 0.745 3.41 0.119 1.148 23.82 0.530 0.222 1.916
PWM + NMFC 5.57 0.784 2.32 0.091 0.786 15.73 0.647 0.225 1.641
PWM + geom. disp. 3.95 0.794 2.29 0.081 0.756 14.19 0.653 0.228 1.668
PWM + neural codes 3.93 0.793 2.15 0.067 0.670 14.32 0.584 0.174 1.214
PWM + geom. disp. + neural codes 4.33 0.794 2.14 0.066 0.664 15.39 0.590 0.173 1.224
PWM + geom. disp. + neural codes (BFM) 4.80 0.779 4.04 0.087 1.110 16.78 0.546 0.233 1.956

VoxCeleb2
Same Identity Reconstruction Cross Identity Reconstruction

FID ↓ CSIM ↑ AKD ↓ AED ↓ APD ↓ FID ↓ CSIM ↑ AED ↓ APD ↓
X2Face 30.34 0.538 21.66 0.188 7.780 41.31 0.379 0.280 9.757
Bi-Layer 57.26 0.541 2.84 0.138 1.153 66.22 0.436 0.221 1.780
LSR 12.43 0.275 2.66 0.156 1.388 18.17 0.217 0.214 1.928
FOMM 8.32 0.718 2.69 0.118 1.291 26.00 0.475 0.231 2.545
3D-FOMM 3.49 0.723 3.11 0.118 1.498 14.52 0.567 0.240 3.189
HeadGAN 8.59 0.704 3.87 0.112 1.665 19.47 0.473 0.227 2.647
PIRender 7.77 0.677 3.47 0.144 1.758 19.15 0.508 0.229 2.852
PWM + NMFC 4.17 0.725 2.64 0.118 1.162 10.68 0.601 0.230 2.142
PWM + geom. disp. 3.14 0.732 2.69 0.111 1.203 9.83 0.612 0.234 2.564
PWM + neural codes 3.29 0.723 2.37 0.087 0.954 10.15 0.528 0.177 1.498
PWM + geom. disp. + neural codes 3.18 0.726 2.36 0.088 0.954 9.97 0.541 0.178 1.533
PWM + geom. disp. + neural codes (BFM) 3.63 0.721 3.70 0.109 1.552 11.15 0.516 0.227 2.569

4.2 Evaluation Metrics
We adopt Frechet Inception Distance (FID) [13], Cosine Similarity (CSIM) [6], Average
Keypoint Distance (AKD), Average Pose Distance (APD) and Average Expression Distance
(AED) as our evaluation metrics. FID measures the realism of the generated images and
CSIM measures the capability of identity preservation. AKD, APD and AED evaluate the
geometry accuracy in terms of facial landmarks, head pose (yaw, pitch & roll) and the ex-
pression parameters obtained from FLAME. More details of evaluation metrics can be found
in the supplementary material.

For same identity reconstruction, we perform self-reenactment where the source portrait
image and the driving portrait image come from the same video clip. During evaluation, we
randomly sample pairs of source and driving frames from each video and do both forward
and backward reconstruction. This is to ensure that we always cover the difficult cases. For
instance, synthesizing a frontal face from a profile face is always harder than the reversed
due to severe occlusions in profile face.

For cross identity reconstruction, we perform face reenactment where the source portrait
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image and the driving portrait image come from different videos. One advantage of our
model is that the facial motion transfer can be accomplished independent of identity due to
the disentangled parameterization of shape, pose and expression in FLAME. Therefore, we
replace the shape of the driving face with that of the source to preserve the facial geometry.
Additionally, because facial landmarks reflect person-specific facial geometry and the driv-
ing image has a different identity and appearance from the source image, AKD can no longer
be used to measure the accuracy of motion transfer on this task.

Figure 3: Qualitative results. Top two rows are same identity reconstruction and the bottom
three rows are cross identity reconstruction. Zoom in for better visual comparison.

4.3 Results
Qualitative results are presented in Fig. 3. We can see that our models generate images
with better realism and higher sharpness compared to other baselines. We refer readers to
the supplementary material for more qualitative results. Quantitative results are shown in
Tab. 1. Our method outperforms prior models on all metrics. X2Face and Bi-Layer have
relatively worse numbers on all metrics. This is because they encode motion information in
an embedding vector, losing spatial information that could otherwise be useful to guide their
model to generate quality images. FOMM has good results on same identity reconstruc-
tion, but its performance drops significantly on cross identity reconstruction. This might
be FOMM’s motion descriptor dependent on the subject’s appearance. Once the subject’s
identity changes, FOMM brings not only facial motion but also the information of the new
identity to image synthesis. Compared to FOMM, 3DMM based models such as HeadGAN
and PIRender show better results on this task due to 3DMM’s disentangled representation of
identity and facial movement. 3D-FOMM outperforms other baselines significantly, which
also justifies the inclusion of 3D information for guidance. Our models achieve the best re-
sults attributed to the proposed PWM and guiding geometric patterns. We also notice that
“PWM + geom. disp.” is better on image quality (FID & CSIM) while “PWM + neu-
ral codes” performs better on geometry accuracy (AKD, AED & APD), suggesting their
slightly different focus in guidance, which we will analyze individually in Sec. 4.5.

4.4 Face Editing
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Figure 4: Face editing results.

The disentangled parameteriza-
tion of FLAME enables us to
edit the shape, pose and expres-
sion individually to generate cus-
tomized portrait images. Fig. 4
shows some examples of face edit-
ing. Our model generates photo-
realistic images with natural poses
and expressions. It can even syn-
thesize teeth in the open mouth re-
gion (see second to last column of
Fig. 4).

4.5 Ablation Study
Two major components that have a significant impact on the model performance are the
PWM and the guiding geometric patterns. Below we assess their individual influence.

The effectiveness of PWM. We train a model variant similar to “PWM + neural codes”
but replace the posed neural codes with the normalized mean face coordinates (NMFC). We
render a 3-channel image using the normalized coordinates of the mean face obtained from
FLAME. The same representation has been used in HeadGAN [8]. We denote this model by
“PWM + NMFC”. We compare this model variant with HeadGAN, which solely predicts the
displacement field at a single pyramid scale and uses that to warp features. As shown in Tab.
1, “PWM + NMFC” outperforms HeadGAN by a large margin on all metrics except AED,
especially on the image quality metrics FID and CSIM. This shows the importance of feature
realignment at each pyramid level and the effectiveness of alternating feature warping and
displacement prediction via a sequence of PWMs.

The role of geometric patterns. By comparing “PWM + geom. disp.” and “PWM +
neural codes” in Tab. 1, we find that the geometric displacement field tends to generate im-
ages with higher fidelity and is better at preserving identity, but at the sacrifice of geometry
accuracy. There are several reasons for this. First, unlike posed neural codes, geometric
displacement field does not encode facial geometry and semantics. Instead, it only pro-
vides information about relative motion transfer, which makes it harder to generate images
spatially aligned with the target pose, hence lower geometry accuracy. With the same archi-
tecture and complexity, weaker constraint on facial geometry and semantics makes “PWM
+ geom. disp.” focus more on realism during training, resulting in better image quality.
Second, a model needs to synthesize more pixels for more aggressive motion change. For
example, when the model is used for face frontalization, the more it tries to correct the face
pose, the more pixels it needs to create for the originally occluded face region. By doing less
motion change (less pixel synthesis), “PWM + geom. disp.” naturally obtains better image
quality. This explains the trade-off between geometry correctness and image quality.

The above can also be justified by metrics such as L1, SSIM and LPIPS. Because those
metrics are calculated pixelwise and averaged by spatial dimensions, they, to certain extent,
reflect how accurate the synthesized images are spatially aligned with the ground truth. We
compute the metrics for same identity reconstruction where ground truth image of the source
identity is available. Results are presented in Tab. 2. The better results of “PWM + neural
codes” can be attributed to the posed neural codes providing more information about facial
geometry and semantics at the corresponding pixel locations.
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Table 2: Additionally metrics for same iden-
tity reconstruction.

VoxCeleb1
L1 ↓ SSIM ↑ LPIPS ↓

PWM+geom. disp. 11.93 0.779 0.106
PWM+neural codes 11.38 0.782 0.103

VoxCeleb2
L1 ↓ SSIM ↑ LPIPS ↓

PWM+geom. disp. 13.60 0.743 0.137
PWM+neural codes 13.04 0.747 0.133

We also try the combination of geo-
metric displacements and neural codes (via
channel concatenation) as guidance, shown
as “PWM + geom. disp. + neural codes” in
Tab. 1. Compared to models that use geo-
metric displacements and neural codes sep-
arately, combining the two does not boost
the performance further. Like neural codes
guided model, the mixed model tends to fa-
vor geometric correctness by trading off realism.

The dependence on 3DMM. We are interested in the dependence of our method on the
type of 3DMM in use. Therefore, we add an experiment with the “PWM + geom. disp. +
neural codes” configuration but use the Bazel Face Model (BFM) [2, 7, 26] as the underlying
3DMM. As can been seen in Tab. 1, BFM underperforms FLAME but it still outperforms
other baselines on most metrics, demonstrating that our method is generic. We also extend
AED and APD by fitting a BFM face to compute the expression and pose parameters. Results
are shown in Tab. 3. The FLAME based model has better performance even on the BFM
computed AED and APD. Compared to BFM that only models the face region, we believe
the better quality of FLAME benefits from its modeling of full head and neck.

Table 3: Comparison between different 3DMMs. The subscripts F and B denote a metric
computed using FLAME and BFM respectively.

VoxCeleb1
Same Identity Reconstruction Cross Identity Reconstruction

AEDF APDF AEDB APDB AEDF APDF AEDB APDB
PWM + geom. disp. + neural codes (FLAME) 0.066 0.664 0.088 0.791 0.173 1.224 0.228 1.702
PWM + geom. disp. + neural codes (BFM) 0.087 1.110 0.087 1.245 0.233 1.956 0.230 2.128

VoxCeleb2
Same Identity Reconstruction Cross Identity Reconstruction

AEDF APDF AEDB APDB AEDF APDF AEDB APDB
PWM + geom. disp. + neural codes (FLAME) 0.088 0.954 0.116 1.366 0.177 1.533 0.241 2.294
PWM + geom. disp. + neural codes (BFM) 0.109 1.552 0.110 1.937 0.227 2.569 0.238 2.885

Further discussion. One limitation is the dependence on the fitting quality of 3DMM.
In fact, this is a common problem because almost all models rely on either 3DMM fitting
or landmark detection. Isolating and quantifying the impact of 3DMM fitting and landmark
detection still remains an open question. However, we have seen [29, 35] made efforts in
using self-learned landmarks (which the model deems important but are less interpretable to
human) for face warping. Similarly, one future direction could be embedding a self-hosted
3DMM within the model to remove the dependence on external 3DMM fitting.

5 Conclusion
A novel geometry driven model is presented for one-shot face animation. We show that
our model outperforms other baselines in both image quality and geometry accuracy. By
studying each proposed component, we demonstrate the effectiveness of the progressive
warping module (PWM) and find out that each geometric pattern has a different focus in
guidance. The geometric displacement field achieves better image quality whereas the posed
neural codes favor better geometry correctness.
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