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1 Training Losses

In this section we provide the details of the loss functions that are used during training. We
denote the ground truth driving image by I; and generated output image by /,,.

1.1 Perceptual loss

We adopt a VGG-19 [8] based perceptual loss [6]. A pyramid of three scales (256x256,
128x128, 64x64) of input images are used and the loss is calculated on the convolutional
outputs (instead of the pooling outputs) of the first five blocks.

Lpllalo) = X1 Y Viilly) = Vi), (M
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where s denotes the image scale and V; ;(+) is the j-th layer output of VGG-19 at spatial
location i.

1.2 Adversarial loss

To generate photo realistic images, we train the model with Patch-GAN [5] and Hinge loss
[7]. Similar to perceptual loss, we apply adversarial training on a pyramid of three scales
(256x256, 128x128, 64x64) of input images.

L = —YLY.Dik), 2
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where s denotes the image scale, i is the spatial location of Patch-GAN discriminator
output, L¢g and Lp are the generator loss and discriminator loss respectively.

1.3 Feature matching loss

To stabilize adversarial training, we also adopt discriminator feature matching loss between
the real images and generated images. Again, the loss is calculated on a pyramid of three
image scales.
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where s denotes the image scale, D; ;(-) denotes the j-th layer output of the discriminator
D at spatial location i.

1.4 Additional warping constraints

So far we have described how we compute the losses for the generated output image 1,. To
add more constraints for the model to learn correct displacements, we take the predicted
displacement field from the last pyramid in the decoder and use that to warp the source
image to create a warped image I,,. This image is less realistic than I,, but still can provide
some additional supervision to train the model. Therefore, we take the warped image /,, and
compute all of the above losses between 1, and ;.

2 Implementation Details

Here we show the implementation details of the proposed model in Fig. 1. The model adopts
an encoder-decoder structure. For the model variant “PWM + geom. disp.”, the guidance
map shown in the figure would be the rendered geometric displacement field and the input
would be the source image only. For the model variant “PWM + neural codes”, the posed
neural codes (rendered in target image space) would be used as the guidance map. In this
case, we also render the latent codes in source image space and concatenate it with the source
image before being fed to the encoder.

3 More on Evaluation Metrics

We use the below metrics to evaluate our model and other baselines.

Frechet Inception Distance (FID) [4]. We adopt InceptionV3 [9] as the backbone net-
work and use the output from the last average pooling layer as the input feature vectors to
FID. FID measures how close the distribution of generated images is to that of the real im-
ages. Therefore it reflects the realism of generated images. For same identity reconstruction,
we compute FID between generated images and ground truth target images. For cross iden-
tity reconstruction, we compute FID between generated images and input source images.
This is to ensure that we measure the realism based on the same identity.

Cosine Similarity (CSIM). We adopt ArcFace [3] as the underlying network to produce
the face embedding for comparison. We first detect 68 facial landmarks with [1, 2] and align
the face with a predefined reference face to address any ambiguity in scale and rotation.
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Figure 1: Implementation details of the proposed model.

Then we calculate CSIM on the aligned face images. Because the underlying network is pre-
trained for face verification, CSIM can be used to evaluate a model’s capability of preserving
identity. Similar to FID, we compute CSIM between generated images and ground truth
target images for same identity reconstruction and compute CSIM between generated images
and input source images for cross identity reconstruction.

Average Keypoint Distance (AKD). We detect 68 facial landmarks [1, 2] and compute
the L1 distance between the landmarks of generated images and ground truth target images.
AKD is used as a way of measuring the accuracy of motion transfer. It is only used for same
identity reconstruction because we do not have the reenacted image of the source identity
available as ground truth. Computing AKD between generated images and driving images
of different identities is erroneous since facial landmarks encode not only pose information
but also person-specific shape information. We should exclude any noise from identities by
using the same subject.

Average Pose Distance (APD) and Average Expression Distance (AED). We fit FLAME
on images and compute the L1 distances of their pose and expression parameters respec-
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tively. Note that the pose here refers to the yaw, pitch and roll angles of the global head
pose estimated by FLAME. APD and AED are used to evaluate how accurate the model is
to transfer the head pose and facial expression. For same identity reconstruction, we com-
pute APD and AED between generated images and the ground truth target images. For cross
identity reconstruction, we compute APD and AED between generated images and driving
images because they are expected to have the same poses and expressions.

4 Additional Qualitative Results

In this section, we present more qualitative results to show the visual quality of synthesized
portrait images. See Fig. 2 for same identity reconstruction and Fig. 3 for cross identity
reconstruction.
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Figure 3: Qualitative results for cross identity reconstruction.
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