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3. Policy Inference & Optimization

1. Background & Problem 2. Designs

4. Experiments

Message: + SVPG, a spiking-based variational policy gradient method with RWTA network and R-STDP.
+ Experiment results reveal its potential for solving RL tasks and to have inherent robustness.
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Background

Problem

Local learning rules

Global RL target

LIF neuron model

How to establish the connection?

RWTA Network

Policy Function

Policy “based on an energy functionof the firing states.

○: firing states of the neurons;  ▲: firing probabilities of the neurons

Policy Inference

Policy Optimization

Mean-field inference

Target function

Minimize KL-divergence

In RWTA network
Let , then

Let                                 , then

In neuron model
ĄRWTA net is suitable for policy inference

Policy function (iterate until convergence)

Precise differential ᾠRequires pseudo-inverse of                           -- computationally infeasible

Approximation treat ▲on the right side as constants

Ą The designed STDP rules can do approximated policy optimization

In STDP framework
1. Assume a large enough spiking step number

2. Let

Tasks & Variations

Input noises Network noisesPendulumlength Pendulumthickness

Results

(supervised)

MNIST inputGaussian noiseMNIST networkGaussian noise

GYMIP inputuniform noise GYMIP networkuniform noise

GYMIP pole length GYMIP pole thickness

Length in training = 1.5 Thickness in training = 0.05

Distribution of changes in 
ή under input noisesNet sparsity after training


