Biologically Plausible Variational Policy Gradient with Spiking Recurrent Winner-Take-All Networks

Zhile Yang¹, Shangqi Guo†², Ying Fang³, Jian K. Liu†¹
¹University of Leeds, ²Tsinghua University, ³Fujian Normal University

Keywords: reinforcement learning, spiking neural networks

Message: + SVPG, a spiking-based variational policy gradient method with RWTA network and R-STDP. + Experiment results reveal its potential for solving RL tasks and to have inherent robustness.

1. Background & Problem

- **Background**
 - Human-level? Adaptability, robustness ...
 - ANN to SNN conversion
 - Surrogate gradient-based BP
 - Modulated STDP

- **Problem**
 - LIF neuron model
 - Local learning rules
 - Global RL target
 - Policy function

- **Global RL target**
 \[\nabla_{\pi} J(\pi) = E_{s \sim \rho(s)} \sum_{t=0}^{T-1} \sum_{i=0}^{T} \nabla \ln \pi(a_i|s_i) \]

- **Policy Inference**

 - Target function
 \[p(\nu_a, \nu_b|s) = \frac{1}{Z(q)} \exp(E(\nu)) \]

 - Mean-field inference
 \[\tilde{p}(\nu_a, \nu_b|s) = \tilde{p}(\nu_a|s)p(\nu_b|s) \]

 - Minimize KL-divergence
 \[\mathcal{D}_{KL}(s)|\rho_b = 0 \| \rho = \frac{1}{Z(\rho)} \exp(E(\nu)|q + w^T \nu + b) \]

- **In RWTA network**
 - Let \[\rho_l = \tilde{\rho} \]
 \[\Rightarrow \] RWTA net is suitable for policy inference

- **In neuron model**
 - Let \[\int \kappa(y) = 1/g \]
 \[\Rightarrow \] The designed STDP rules can do approximated policy optimization

2. Designs

- **Winner-take-all circuits**
 - Environment
 - Fully connected
 - Action Selection
 - Unidirectional FC
 - Bidirectional FC
 - WTA

- **Policy function**
 - Policy \(\pi \) based on an energy function of the firing states.
 \[\pi(s) = \sum_{a} \tilde{p}(\nu_a|s) \cdot p(\nu_b|s) = \frac{\tilde{p}(\nu_a|s) \exp(E(\nu))}{Z(\rho)} \]

- **Input noises**
 - MNIST (RL)
 - Gym InvertedPendulum-v0

3. Policy Inference & Optimization

- **Policy Inference**

 - Target function
 \[p(\nu_a, \nu_b|s) = \frac{1}{Z(q)} \exp(E(\nu)) \]

 - Mean-field inference
 \[\tilde{p}(\nu_a, \nu_b|s) = \tilde{p}(\nu_a|s)p(\nu_b|s) \]

 - Minimize KL-divergence
 \[\mathcal{D}_{KL}(s)|\rho_b = 0 \| \rho = \frac{1}{Z(\rho)} \exp(E(\nu)|q + w^T \nu + b) \]

- **In RWTA network**
 - Let \[\rho_l = \tilde{\rho} \]
 \[\Rightarrow \] RWTA net is suitable for policy inference

- **In neuron model**
 - Let \[\int \kappa(y) = 1/g \]
 \[\Rightarrow \] The designed STDP rules can do approximated policy optimization

4. Experiments

- **Tasks & Variations**

 - MNIST (RL)
 - Gym InvertedPendulum-v0

 - Input noises
 - Network noises
 - Pendulum length
 - Pendulum thickness

- **Results**

 - SVPG
 - BP
 - BPTT
 - EP
 - ANN

 - MNIST: 0.920 ± 0.001
 - GymIP: 199.87 ± 0.27

- **Graph accuracy**
 - MNIST: Graph accuracy
 - GymIP: Graph accuracy

- **Pendulum length**
 - MNIST: Pendulum length
 - GymIP: Pendulum length

- **Pendulum thickness**
 - MNIST: Pendulum thickness
 - GymIP: Pendulum thickness