
14 YANG, GUO, FANG, LIU: BIOLOGICALLY PLAUSIBLE VPG WITH SPIKING RWTA NETS

A Proof of Theorems
A.1 Proof of Theorem 1
Recall that the mean-field inference function is

@8 =
1

/ (@� (8)) exp{wT
row,8q +wT

col,8q + 18}, (16)

where / (@� (8)) =
∑
9∈� (8) exp{wT

row,8q +wT
col,8q + 18}, 8 = 1, . . . , (=ℎ3ℎ + 30), � (8) is the set

of indices of the neurons in the same circuit as neuron 8, and wrow,8 and wcol,8 are respectively
the 8-th row and column of matrix] (in the shape of a column vector), which corresponds
to the synapses connected to neuron 8. 18 is the 8-th element in vector b.

For each F 9: , There is

m@8

mF 9:
=− /−2 (@� (8))

m/ (@� (8))
mF 9:

exp
{
wT

row,8q +wT
col,8q + 18

}
+ /−1 (@� (8)) exp

{
wT

row,8q +wT
col,8q + 18

}
·
#∑
<=1

[
m (F8< +F<8)

mF 9:
@< + (F8< +F<8)

m@<

mF 9:

]
=− @8/−1 (@� (8))

m/ (@� (8))
mF 9:

+ @8
#∑
<=1

[
m (F8< +F<8)

mF 9:
@< + (F8< +F<8)

m@<

mF 9:

]
.

(17)

For the term m/ (@� (8))
mF9:

, there is

m/ (@� (8))
mF 9:

=
m

mF 9:


∑

<∈� (8)
exp

{
wT

row,<q +wT
col,<q + 1<

}
=

∑
<∈� (8)

{
exp

[
wT

row,<q +wT
col,<q + 1<

]
·
#∑
==1

[m (F<= +F=<)
mF 9:

@= + (F<= +F=<)
m@=

mF 9:

]}
.

(18)

So we have

m@8

mF 9:
=− @8

∑
<∈� (8)

{
@<

#∑
==1

[m (F<= +F=<)
mF 9:

@= + (F<= +F=<)
m@=

mF 9:

]}
+ @8

#∑
==1

[
m (F8= +F=8)

mF 9:
@= + (F8= +F=8)

m@=

mF 9:

]
.

(19)

Similarly, for each 1 9 , there is

m@8

m1 9
= −@8

∑
<∈� (8)

{
@<

[
m1<

m1 9
+
#∑
==1
(F<= +F=<)

m@=

m1 9

]}
+ @8

[
m18

m1 9
+
#∑
==1
(F8= +F=8)

m@=

m1 9

]
.

(20)
By respectively arranging Eq. (19) and Eq. (20) for each @8 into vectors, and combining

the terms into matrices, we can get the Eq. (10) in Theorem 1. �

YANG, GUO, FANG, LIU: BIOLOGICALLY PLAUSIBLE VPG WITH SPIKING RWTA NETS 15

A.2 Proof of Theorem 2
The condition is the same as that in the proof of Theorem 1. The approximate differentiation
of firing rate @8 with respect to F 9: and 1 9 are:

m log(@8)
mF 9:

=

#∑
<=1

[m (F8< +F<8)
mF 9:

@<

]
− 1
/ (@� (8))

∑
<∈� (8)

[
exp{wT

row,<q +wT
col,<q + 1<} ·

#∑
==1

m (F<= +F=<)
mF 9:

@=

]
=

#∑
<=1

[m (F8< +F<8)
mF 9:

@<

]
−

∑
<∈� (8)

[
@< ·

#∑
==1

m (F<= +F=<)
mF 9:

@=

]
,

(21)

m log(@8)
m1 9

=
m18

m1 9
− 1
/ (@� (8))

·
∑

<∈� (8)

[m1<
m1 9
· exp{wT

row,<q +wT
col,<q + 1<}

]
=
m18

m1 9
−

∑
<∈� (8)

[
@<

m1<

m1 9

]
.

(22)

Similar to the proof of Theorem 1, by respectively arranging Eq. (21) and Eq. (22) for each
@8 into vectors, and combining the terms on the right hand side into matrices, we can get the
Eq. (11) in Theorem 2. �

16 YANG, GUO, FANG, LIU: BIOLOGICALLY PLAUSIBLE VPG WITH SPIKING RWTA NETS

B SVPG Algorithm Details
We summarize the overall working flow with our RWTA network as Algorithm 1. For
conciseness, this algorithm does not cover the implementation of spike-based inference and
STDP-based optimization. Note that these spike-related implementations can be done by
simply replacing Eq.(7) with Eq.(9), and applying Eq.(13).

In practice, Actor-Critic (AC) based methods are more commonly used than vanilla
Policy Gradient (PG). The main difference between AC and PG is that AC learns an extra
value function in the place of AC in PG. To adapt our algorithm to AC, we add a multi-layer
perceptron trained with backpropagation to estimate the critic value function, and use the
estimated value to replace the AC in Eq.(1).

The SVPG implemented with REINFORCE algorithm is presented in Algorithm 1. The
equation numbers correspond to the equations in the main text.

Algorithm 1 SVPG with REINFORCE
Input: Discount factor W. Training episode number #epi. Inference iteration number #iter.
Learning rate [.
Parameter: Network shape =ℎ , 3ℎ , 30, 3B .
Output: RWTA Network parameter \.
1: Initialize \.
2: for Episode = 1, . . . , #epi do
3: Clear memory buffer D.
4: for Training step t = 1, . . . ,) do
5: Observe and encode state BC .
6: Random initialize q0 and qℎ .
7: Iterate Eq.(7) until convergence. {Inference}
8: Sample action 0C using q0.
9: Perform 0C , observe reward AC and new state BC+1.
10: Store 〈BC , 0C , AC , BC+1, q, v〉 into D.
11: end for
12: Get data from D.
13: Calculate gradient using Eq.(1), Eq.(12), Eq.(11). {Optimize}
14: Update \← \ +[∇\
15: end for

YANG, GUO, FANG, LIU: BIOLOGICALLY PLAUSIBLE VPG WITH SPIKING RWTA NETS 17

C Experiment Details

C.1 Task Details
MNIST task. In this task, each episode includes only one time step. At the time step, the
agent observes a randomly selected image from the MNIST training dataset, and selects one
of the ten categories as its action. The input images are of size 28×28 and are in grayscale.
The range of values is converted to [0,1] by dividing 255. For all the algorithms compared,
the input images are stretched to vectors (with length 784). A reward of +1 indicates a correct
selection, −1 the opposite. The maximum length of training is set to 50k steps (in each step
a randomly selected 100-size batch is used for training) so that in practice all the methods
converge. During training, a checkpoint of the network parameters is saved every 100 training
steps. After training, the checkpoint with the best accuracy in the testing set (without noise)
is reloaded to do the testing. The MNIST testing dataset is used in testing.

GymIP task. Each episode has a maximum of 200 time steps, with a reward of +1 for each
step. The episodes end early if the pendulum (pole) falls. The observation is a 4-dimensional
vector with no predefined ranges. To normalize the observations to the range of [0,1], we use
a random policy to sample from the environment, and use the samples’ range to determine a
linear mapping to the range of [0,1]. In our experiments, the sampled ranges are [−0.4,0.4],
[−0.2,0.2], [−1.7,1.7], [−1.25,1.25]. The action space consists of 5 discrete actions, evenly
extracted from the range [−3,3]. The maximum length of training is set to 20k episodes.
During training, a checkpoint of the network parameters is saved every 20 episodes. After
training, the checkpoint with the best performance is reloaded to do the testing.

C.2 Implementation Details
Network Sizes. 1) For the MNIST task, SVPG uses an RWTA network with 784 input
neurons, 20 hidden WTA circuits each with 10 neurons, and 10 output neurons; SVPG-
shrink uses a smaller RWTA network where the number of hidden WTA circuits is changed
to 17 so that the total number of learnable parameters is close to other methods; BP, BPTT,
ANN2SNN, and EP use layered networks with 784 input neurons, 1 hidden layer with 200
neurons, and 10 output neurons. 2) For the GymIP task, SVPG uses an RWTA network
with 4 input neurons, 8 hidden WTA circuits each with 8 neurons, and 5 output neurons;
SVPG-shrink uses a smaller RWTA network where the number of hidden WTA circuits is
changed to 3. BP, BPTT, and ANN2SNN use layered networks with 4 input neurons, 1
hidden layer with 64 hidden neurons, and 5 output neurons. 3) For the GymIP task there is a
critic network used in all the methods. This critic network is layered, with 4 input neurons,
2 hidden layers each with 64 neurons, and 5 output neurons.

Optimizer. For the compared methods, i.e., BP, BPTT, and EP, we select the stochastic
gradient descent (SGD) with zero momentum for the MNIST task, and select the RMSprop
optimizer for the GymIP task. For the SGD optimizer, we incompletely tried learning rates
ranging from 0.001 to 0.3, and found 0.1 to be a good balance between training speed and
stability. For the RMSprop optimizer, we use a learning rate of 0.001. As for SVPG, we use
a learning rate of 0.1 in the MNIST task and 0.001 in the GymIP task.

RL hyper-parameters. The GymIP task involves sequential decisions which may have
long-term effects on rewards. We select the discount rate W to be 0.999 (close to 1) so that
the discounted sum of rewards reflects the length of the episodes, maximizing which is the
task objective. To stabilize training, we use a replay buffer with a size of 100. To encourage

18 YANG, GUO, FANG, LIU: BIOLOGICALLY PLAUSIBLE VPG WITH SPIKING RWTA NETS

the agent to explore more actions, we add an intrinsic exploration reward to the environment
reward; the reward is calculated as the entropy of the agent’s action distribution; the ratio of
the environment reward and the intrinsic reward is 2:1.

YANG, GUO, FANG, LIU: BIOLOGICALLY PLAUSIBLE VPG WITH SPIKING RWTA NETS 19

D Additional Experiment Results
D.1 MNIST Input Noise Illustration

0 0.2 0.4 0.6 0.8 1.0

Figure 7: Some input images with different strengths of Gaussian noises in MNIST task.
Standard deviation noted above images.

D.2 Additional Comparison of Three SVPG Implementations
In the main text, we present the results regarding input salt noise and network Gaussian noise.
Here we present the results with other noises, as shown in Figure 8. These results further
support the analysis in the main text.

0.0 0.5 1.0 1.5
Noise Standard Deviation

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Spike dexp
Spike rect
Rate with noise

(a) Input Gaussian

0.0 0.2 0.4
Noise Amount

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Spike dexp
Spike rect
Rate with noise

(b) Input Gaussian&Salt

0.0 0.2 0.4
Noise Amount

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

Spike dexp
Spike rect
Rate with noise

(c) Input Salt&Pepper

0 1 2 3 4
Noise Amplitude

0.2

0.4

0.6

0.8

Te
st

 A
cc

ur
ac

y

Spike dexp
Spike rect
Rate with noise

(d) Network Uniform

Figure 8: Additional comparison of three implementations of SVPG.

D.3 MNIST Additional Results

0.00 0.25 0.50 0.75 1.00
Noise Standard Deviation

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SVPG
SVPG-shrink
BP
BPTT
EP
ANN2SNN

(a) Gaussian

0.0 0.2 0.4
Noise Amount

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SVPG
SVPG-shrink
BP
BPTT
EP
ANN2SNN

(b) Salt

0.0 0.2 0.4
Noise Amount

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SVPG
SVPG-shrink
BP
BPTT
EP
ANN2SNN

(c) Salt&Pepper

0.0 0.2 0.4
Noise Amount

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SVPG
SVPG-shrink
BP
BPTT
EP
ANN2SNN

(d) Gaussian&Salt

Figure 9: MNIST – Input noises.

0.00 0.25 0.50 0.75 1.00
Noise Standard Deviation

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SVPG
SVPG-shrink
BP
BPTT
EP
ANN2SNN

(a) Gaussian

0 1 2 3
Noise Amplitude

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

SVPG
SVPG-shrink
BP
BPTT
EP
ANN2SNN

(b) Uniform

Figure 10: MNIST – Network noises.

20 YANG, GUO, FANG, LIU: BIOLOGICALLY PLAUSIBLE VPG WITH SPIKING RWTA NETS

D.4 GymIP Additional Results
Here are the complete results of all the variations tested in the GymIP task. Note that the
“Union” variation means the length and thickness of the pendulum change together with a
fixed ratio (length:thickness=16:1).

0.0 0.1 0.2 0.3 0.4
Noise Standard Deviation

0

50

100

150

200

Te
st

 S
co

re

SVPG
SVPG-shrink
BP
BPTT
ANN2SNN

(a) Gaussian

0.0 0.2 0.4 0.6
Noise Amplitude

0

50

100

150

200

Te
st

 S
co

re
SVPG
SVPG-shrink
BP
BPTT
ANN2SNN

(b) Uniform

Figure 11: GymIP – Input noises.

0.00 0.25 0.50 0.75 1.00
Noise Standard Deviation

0

50

100

150

200

Te
st

 S
co

re

SVPG
SVPG-shrink
BP
BPTT
ANN2SNN

(a) Gaussian

0 1 2 3
Noise Amplitude

0

50

100

150

200

Te
st

 S
co

re

SVPG
SVPG-shrink
BP
BPTT
ANN2SNN

(b) Uniform

Figure 12: GymIP – Network noises.

0 2 4
Pole Length

0

50

100

150

200

250

Te
st

 S
co

re

SVPG
SVPG-shrink
BP
BPTT
ANN2SNN

(a) Length

0.0 0.1 0.2 0.3
Pole Thickness

0

50

100

150

200

Te
st

 S
co

re

SVPG
SVPG-shrink
BP
BPTT
ANN2SNN

(b) Thickness

0.1 0.2 0.3
Pole Thickness

0

50

100

150

200
Te

st
 S

co
re

SVPG
SVPG-shrink
BP
BPTT
ANN2SNN

(c) Union

Figure 13: GymIP – Pendulum variations.

D.5 Computation Costs
The computation costs of inference and optimization of different methods in the MNIST task
are shown in Table 2. The values presented are the averaged times of 10 steps. The results
are gained using one NVIDIA RTX 3080 GPU. 1) For the inference period, SVPG consumes
much more time than BP and EP. This is because SVPG needs to simulate a spike train during
each inference step. The rate coding version of SVPG alleviates this problem and achieves a
computational efficiency close to that of BP and EP. 2) For the optimization period, SVPG
is the most efficient. This is because SVPG updates the parameters using only local learning
rules, while other methods need backpropagation (BP and BPTT) or iterations (EP).

Time (ms) SVPG-rate SVPG-spike BP BPTT EP

Inference 2.1 373.1 0.2 52.5 4.3

Optimization 0.2 0.5 1.6 60.1 61.1

Table 2: Computation costs.

