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Abstract

Material is distinguishing characteristic of real world objects. Recognizing unique
texture of certain material type enables improved object detection or semantic segmenta-
tion. Incorporating acquired material properties such as surface reflectance of real world
objects makes more realistic and richer 3D models in computer graphics. A robot arm
essentially requires to recognize the stiffness or roughness of target object for precise and
undamaged interaction. Despite the necessities, recognizing material type and its prop-
erties from color image is a challenging task. In this work, we propose (1) multi-scale
texture hierarchy extraction network (MSTH-Net) encoding view-independent compre-
hensive multi-scale textures and their hierarchy and (2) multi-view surface reflectance
extraction network (MVSR-Net) encoding view-specific features revealing surface re-
flectance of a material type. Finally, MaterialNet is proposed combining MSTH-Net and
MVSR-Net for material type recognition from multi-view color images. Extensive ex-
perimental evaluations on six public benchmark datasets show promising performance of
proposed method and potential for practical applications.

1 Introduction

Real world objects are composed of multiple distinguishing materials that are essential
characteristics in determining object category. Altering material composition of an object
changes its sub-category such as wooden vs iron table, fabric vs leather couch. Recognizing
material types enables improved object detection and semantic segmentation. In computer
graphics, material properties such as surface reflectance enable realistic rendering of a 3D
model. Industrial robot arm interacting with many different kinds of objects composed of di-
verse material types has to react correspondingly for precise grabbing without any damage on
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them. If the material type of an arbitrary object can be recognized from input images, it sim-
ply can be added to corresponding 3D model enabling material-aware realistic rendering or
robot arm interaction. Certain material type is well categorized by its surface characteristics
such as reflectance, stiffness, friction, roughness, and texture. While haptic properties (stiff-
ness, friction, and roughness) are difficult to be estimated explicitly from visual data, texture
of a certain material type could be easily observed from color image and has been widely
adopted for semantic segmentation and object detection. Amorphous object classes such as
road, grass, and sky are characterized and described well by their local textures. Shape-
constrained object classes such as person, cat, and chair also benefit from their unique local
textures and corresponding material types in their characterization. Convolutional neural
network trained with ImageNet favours texture rather than shape [7] in the description of an
object. It is obvious that object description could be optimized when texture information is
properly incorporated with shape [12]. Surface reflectance is another distinguishing property
of a material type that can be estimated from multiple viewpoint observations (e.g.[19, 22]).
Intensity variation observed along the viewpoint changes discloses the surface reflectance of
target material type. Texture uniqueness in objects mainly comes from their distinguishing
material types. Texture recognition plays an important role in figuring out corresponding ma-
terial type. We claim that texture features of an object robust to environmental changes, their
hierarchy along multiple scales, and surface reflectance obtained from multi-view images
are able to characterize material types uniquely and comprehensively. Surface reflectance
provides additional discrimination of material types that can be estimated from illumination
variation of multiple viewpoint

Based on the observations, we conclude that material types are able to be characterized
uniquely and comprehensively by (1) view-independent texture features of an object robust
to environmental changes and (2) view-specific visual features observed from multi-view
color images revealing surface reflectance. In order to encode both view-independent and
view-specific features for material type recognition, we propose multi-scale texture hierar-
chy extraction network (MSTH-Net) and multi-view surface reflectance extraction network
(MVSR-Net). MSTH-Net encodes comprehensive multi-scale textures and their correla-
tions from low-level features of small receptive field to high-level features of large receptive
field of backbone convolutional neural networks. MSTH-Net is expected to extract view-
independent stationary visual features robust to illumination changes and other variations
from multi-view images. On the other hand, MVSR-Net collects visual features of vary-
ing illuminations along the viewpoint changes. MVSR-Net is expected to capture view-
specific features from multi-view images, which extract the characteristics of object surface
reflectance. Finally, MaterialNet is proposed for material type recognition from multi-view
images. MaterialNet is composed of a pair of MSTH-Net and MVSR-Net. MaterialNet
combines texture and reflectance features for the description of visual characters of material.

2 Related Work

Prior efforts on material type recognition are categorized according to the material prop-
erties primarily used for the classification task: texture-based approach, reflectance-based
approach. Recently, texture recognition has been conducted employing convolutional neural
networks. Cimpoi et al.[6] propose Fisher Vector CNN(FV-CNN) for texture recognition
with orderless pooling, because in general texture instances from same class do not maintain
common shape as if an object class does. Song et al.[18] propose locally-transferred Fisher
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vector (LFV) by combining the output of FV-CNN with a learnable locally connected layer
to keep the benefits of both FV encoding and neural network. Andrearczyk et al.[1] propose
Texture-CNN (T-CNN) using a simple Global Average Pooling (GAP) layer that averages the
features of each channel obtaining spatially orderless description while reducing the memory
usage and computation complexity. There has been a bunch of work that analyze various vi-
sual properties of material such as visual texture for material type recognition. Hu et al.[10]
and Sharan et al.[17] experimentally analyze the properties of materials and suggest new set
of features such as micro-SIFT[17] and variance of gradient orientation[10]. Bell et al.[2]
demonstrate patch-wise material classification and semantic segmentation using large-scale
annotated training database named Materials in Context (MINC). They show that surround-
ing context information such as object and scene is crucial for real-world material classifica-
tion. Schwartz et al.[15] improve material semantic segmentation performance by explicitly
integrating local appearance of materials and global context such as objects and scenes. To
integrate the global context information into material semantic segmentation model, they
propose to combine a pre-trained network for object recognition task and trainable material
recognition network. Zhang et al.[28] propose DeepTEN, an end-to-end framework, using
residual dictionary learning to learn inherent visual properties of texture. DEP[23] integrates
orderless texture features and local spatial features by using DeepTEN as a texture encod-
ing backbone claiming that local spatial information is important cue for the recognition of
real world material types. Zhai et al.[25] propose MAPNet progressively learning visual
texture properties by mutually reinforcing manner. They also propose DSRNet[26] utiliz-
ing spatial dependencies among texture primitives to capture the structural information of
textures. The most recent texture recognition studies are based on fractal analysis. Zhile
Chen et al. propose CLASSNet[4] to model CNN feature maps across multiple layers to
take advantage of statistical self-similarity (SSS), one of the main properties of textures. Xu
et al. propese FENet[21] characterizing spatial layout via a local-global hierarchical frac-
tal analysis. CLASSNet and FENet integrated with ResNet backbone show state-of-the-art
performance in texture recognition.

Recently, some material recognition studies are introduced extracting surface reflectance
which is one of the core visual properties of materials. Zhang et al.[27] propose reflectance
hashing that captures reflectance disk of material surface using a unique optic camera for
material type recognition. Georgoulis et al.[8] perform material classification by taking the
advantages of the 3D shape of an object and the reflectance map. lee et al.[11] propose
two-stream deep neural networks using both color and Infrared (IR) surface reflectance es-
timation using Time-of-Flight depth camera. There are several material classification meth-
ods [9, 19, 20] estimating reflectance using 4D light-field camera. Light field camera takes
multi-view images of narrow angle changes using single camera equipped with lenslet array
extracting partial reflectance information. Purri et al. [14] propose reflectance residual en-
coding, which captures both multi-angle and multi-spectral information to improve material
semantic segmentation performance on satellite image. These methods work under limited
experimental conditions or employ customized or special type of cameras. On the other
hands, Xue et al.[22] use differential angular images encoding angular gradient reflectance,
and multi-view images to improve the performance of ground terrain material classification.
Additionally, they propose TEAN[24] to improve classification performance by adding a re-
flectance branch that takes a differential angular image as input to their DEP structure[23].
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Figure 1: Multi-scale texture hierarchy network (MSTH-Net) and its multi-view extension

Figure 2: Sample multi-scale texture hierarchy of similar material groups from GTOS[22]
and DTD[5]. The yellow boxes in an image are salient regions of different scales.

3 Methods
Proposed MaterialNet is composed of multi-scale texture hierarchy network (MSTH-Net)
and multi-view surface reflectance network (MVSR-Net). Multi-scale texture hierarchy net-
work (MSTH-Net) attached to existing CNN based backbone encoder is designed to collect
texture features from local regions of multiple scales as illustrated in Figure 1 (a). MSTH-
Net takes both entire and salient features from each layer in multi-scale texture extractor
(part 1 in Figure 1) that are fed to texture attention and texture hierarchy builder (part 2 in
Figure 1). Multi-scale texture hierarchy features are extracted and concatenated with the
features extracted from the backbone encoder. Backbone encoder in Figure 1 (a) is, but not
limited to, ResNet18 that consists of sequentially connected residual blocks (RBs).

3.1 Multi-Scale Texture Hierarchy Network
Multi-scale texture extractor (part 1 in Figure 1 (a)) collects low to high level textures of
salient regions according to the size of the receptive field. Each texture delivers different
aspects of visual characteristics observed from difference scales of input image. Figure 2
shows several examples of multi-scale textures from different datasets used in our experi-
ments. Lower scale texture (of smaller salient patch) captures intrinsic surface texture of a
material type regardless of corresponding object shape. Mid-scale texture shows the shape of
a piece or an object of the material type. Higher scale texture (of bigger salient patch) shows
the texture of multiple pieces of the material type. In general, higher scale texture reveals
contextual aspects such as the shape of a pile of multiple pieces or unique arrangement of
multiple small objects of the material type.
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Let T is total number of residual blocks (RBs) plus 1(1st Conv layer) of ResNet18 and
Zt(t = 1, ...,T ) is the number of channels at each RB. First, entire-features Ft(t = 1, ...T ) ∈
RHt×Wt×Zt are extracted from each RB. And then, we select Nt number of the most activated
regions as salient regions within the window of size H ′×W ′. (Our implementation settings
are N1 = 3,N2 = 3,N3 = 2,N4 = 1,N5 = 0,H ′ = W ′ = 10). In the entire-feature of the last
RB FT , we do not select salient region because spatial size of FT is smaller than the window
size. The Ft from each RB are fed to a convolutional layer, and the output feature map is
F̂t ∈ RHt×Wt×C. (ResNet18: C=128, ResNet50: C=192). Then we extract salient-feature
patches Pt = [P1

t ; ...;PNt
t ]∈RNt×H ′×W ′×C from F̂t based on previously found salient regions.

From the residual block of lower to higher level, receptive field of the patch increases. F̂t
contains entire textures of input image captured with different scales of local regions. On
the other hands, Pt contains only selected local salient textures out of F̂t . Obtained F̂t and
Pt are fed to global average pooling (GAP) layer. Output of GAP layers of F̂t and Pt are
single entire vector Vt ∈ RC and Nt number of salient vectors Wt = [W 1

t ; ...;W Nt
t ] ∈ RNt×C,

respectively. Finally with the salient vectors, all Wt are element-wise summed to each other
(W 1

t + ...+W Nt
t ) making unified salient vector Ŵt ∈RC. If Nt is 1, Ŵt equals to Wt . Details

of MSTH-Net shown in Figure 1 are based on input image size of 224×224.
Texture attention and texture hierarchy builder (part 2 in Figure 1 (a)) get entire vector Vt

and unified salient vector Ŵt from multi-scale texture extractor (part1 in Figure 1 (a)). Then
the Ŵt fed to the sigmoid function is multiplied to Vt providing attention of strongly activated
features in salient regions to entire vector. This feature-wise attention acts as salient texture
boosting in the following texture hierarchy builder. While delivering global information
extracted from entire image, added texture attention from the salient features enriches the
texture representation in the feature space. Output of texture attention Ht ∈RC,(t = 1, ...,T )
is sequentially fed to Long Short-Term Memory (LSTM) to build multi-scale texture hierar-
chy. If Nt = 0, Ht = Vt .

In our MaterialNet, MSTH-Net is combined with MVSR-Net explained in the next sec-
tion that accepts M multi-view input images. For the multi-view environment, multi-view
MSTH-Net(Figure 1 (b)) is constructed by collecting as many texture extractors (part 1)
as the number of views MaterialNet accepts. Multiple texture extractors are followed by
pooling layers, single texture attention and hierarchy builder, thereby view-independent
common multi-scale texture hierarchy features from multi-view input images are extracted.
[Vt,1, ...,Vt,M] and [Ŵt,1, ...,Ŵt,M] obtained from M views are fed to the channel-wise mean
and regulated max pooling to extract view-independent features.

Vt = mean(Vt,1, ...,Vt,M) (1)

Wt =
max(Ŵt,1, ...,Ŵt,M)

max(Ŵt,1, ...,Ŵt,M)−mean(Ŵt,1, ...,Ŵt,M)
, (2)

where Vt ,Wt ∈ RC are respective pooling result. We use mean pooling for entire-features
and regulated max pooling for salient-features. Since entire-features describe global char-
acteristics of an image and multi-view images give similar features of sharing target scene,
entire-features extracted from multi-view images are highly redundant. Therefore, mean
pooling is applied to entire-features. On the other hand, salient-features represent different
local regions. In order to secure outstanding local features, regulated max pooling is adopted.



6 LEE ET AL.: MATERIALNET

Figure 3: Dual MaterialNets with MSTH-Net and MVSR-Net: (a) MaterialNet using color
multi-view images as inputs (b) Diff-MaterialNet using differential angular images as inputs
(c) Dual MaterialNets

3.2 Multi-View Surface Reflectance Network

Multi-view surface reflectance network (MVSR-Net) works on multi-view images fed to M
number of weight sharing backbone encoders. MVSR-Net adds another LSTM to the out-
puts of the backbone encoders to predict single reflectance type out of M multi-view images
as illustrated in Figure 3 (a). Each backbone encoder gives one-dimensional vector build-
ing I = [I1; ...; IM] ∈ RM×D where D is channel size. We expect that each encoder finds
view-specific features from each viewpoint image and LSTM encodes feature variation over
viewpoints. The aspect of illumination changes over viewpoints reveals distinguishing re-
flectance characteristic of surface material. Since the feature vector I of multiple views
are sequentially fed to the LSTM, the order of input images requires certain criterion for
the extraction of surface reflectance. In order to observe physically meaningful illumina-
tion variation of reflectance in the sequence of input images, we constrain that input images
are sorted in order of camera locations so that observed illumination increases or decreases
monotonically. In real situation, however, camera location of each image is missing. In-
stead, images are sorted by increasing order of brightness. Note that multiple images could
be taken within narrow camera view-angle changes observing only partial illumination vari-
ation. Even worse, the partial observations could come from only side views with respect to
material surface or could be uneven in the angle step size.

3.3 MaterialNets

Single MaterialNet(Figure 3 (a)) encodes both texture hierarchy and surface reflectance
from multi-view images. MaterialNet is composed of weight sharing backbone encoders,
multi-view MSTH-Nets, and single MVSR-Net. The output of multi-view MSTH-Nets and
MVSR-Nets are concatenated and fed to final fully connect layers for material type classi-
fication. As shown in Figure 3 (c), we build dual MaterialNets complementarily extracting
2D color and 3D relief based features. MaterialNet (Figure 3 (a)) accepts multi-view color
images. Diff-MaterialNet (Figure 3 (b)) accepts difference images (differential angular im-
ages [22]) of every two consecutive color images aligned by affine transformation before
subtraction [22]. Color difference images observe the gradients of reflectance and 3D relief
textures[22]. In Diff-MaterialNet, MVSR-Nets encode the gradients characterizing material
reflectance and MSTH-Nets encodes 3D relief textures especially in the mid or high scales
of texture hierarchy.
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Figure 4: Multi-view/illumination datasets: (a) GTOS [22] sampled from 19 view directions
with instance label and sorted increasing order of brightness (b) MIW [13] sampled from 25
illuminations with per-pixel label

4 Experimental Evaluation
Experimental evaluation is conducted in two ways. First, MSTH-Net is evaluated on single-
view texture or material datasets and compared with state of the art prior methods. We
use six benchmark datasets for the evaluation of our Multi-Scale Texture Hierarchy network
(MSTH-Net). (a) Describable Texture Dataset (DTD)[5] contains 47 categories of wild tex-
tures with 120 images per category. (b) KTH-TIPS-2b[3] is surface-level dataset composed
of 11 material categories with total 4752 images. (c) Flickr Material Dataset (FMD)[16]
is object-level dataset composed of 10 material categories with 100 images for each cat-
egory. (d) Materials in Context 2500 (MINC-2500)[2] is scene-level dataset of 23 mate-
rial categories each of which contains 2500 images. (e) Ground Terrain in Outdoor Scenes
(GTOS)[22] is a dataset of outdoor ground materials with 40 categories observed from multi-
ple viewpoints. When GTOS dataset is used for single-view input test, one viewpoint image
is treated as one instance. (f) GTOS-Mobile[28] is a dataset collected from GTOS via mobile
phone, which consists of 31 material categories. Training data of GTOS-mobile consist of
small, medium, and large scales, but we only use small scale training data. In our evaluation
on DTD, MINC-2500 and GTOS, we use provided splits of each dataset. KTH-TIPS-2b and
FMD are randomly divided into 10 splits of training and test images with recommended split
size, and the mean accuracy across splits are reported [4].

Secondly, MaterialNets are evaluated on existing two material datasets. (a) Multi-view
GTOS dataset has 19 viewpoint images per sample. Proposed method is compared with prior
material type recognition methods under multi-view conditions [22, 24] on GTOS dataset.
(b) Multi-Illumination Images in the Wild (MIW) [13] consists of multiple illumination im-
ages originally designed for vision tasks such as single-image illumination estimation, image
relighting, and mixed illuminant white balance. Multi-illumination in MIW means varying
location of light source. We ignore Fresnel effect and assume stationaly surface reflectance
over incidence angle. Under such conditions, multi-illumination properly simulates multi-
view observations. ResNet18 and ResNet50 pre-trained on ImageNet are used as backbone.
SGD optimizer with momentum of 0.9 is used and batch size is set to 64 for GTOS, GTOS-
mobile and MINC-2500, and 32 for others. Learning rate with cosine decay is initialized to
0.01. Training is finished after 50 epochs. All training and test images are resized to 256 ×
256 and then cropped to 224 × 224. Horizontal flipping with probability 0.5 is applied to
input images for data augmentation.

4.1 Texture/Material Recognition with MSTH-Net
We compare proposed MSTH-Net with state-of-the-art texture recognition approaches in-
cluding DeepTEN[28], MAPNet[25], DSRNet[26], CLASSNet[4], and FENet[21] with sin-
gle input image on six benchmark datasets: DTD[5], KTH-TIPS-2b[3], FMD[16], MINC-
2500[2], GTOS[22] and GTOS-mobile[23] as summarized in Table 1. In Table 1, pro-
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Method Backbone Texture Material (Single-color)
DTD[5] KTH[3] FMD[16] MINC[2] GTOS[22] GTOS-mobile[23]

MAPNet[25] VGGVD 74.10±0.6 82.70±1.5 82.90±0.9 NA 80.80±2.5 82.00±1.6
DSRNet[26] 74.90±0.7 83.50±1.5 84.00±0.8 NA 81.80±2.2 82.94±1.6

DeepTEN[28]

ResNet18

NA NA NA NA NA 76.12±x.x
DEPNet[23] NA NA NA NA NA 82.18±x.x
MAPNet[25] 69.50±0.8 80.90±1.8 80.80±1.0 NA 80.30±2.6 82.98±1.6
DSRNet[26] 71.20±0.7 81.80±1.6 81.30±0.8 NA 81.00±2.1 83.65±1.5

CLASSNet[4] 71.50±0.4 85.40±1.1 82.50±0.7 80.50±0.6 84.30±2.2 85.25±1.3
FENet[21] 69.59±0.1 86.62±0.1 82.26±0.3 80.57±0.1 83.10±0.2 85.10±0.4
MSTH-Net 69.33±0.9 86.69±1.4 83.17±1.5 79.10±0.5 84.95±2.2 85.10±0.3

DeepTEN[28]

ResNet50

69.60±x.x 82.00±3.3 80.20±0.9 81.30±x.x 84.50±2.9 NA
DEPNet[23] 73.20±x.x NA NA 82.00±x.x NA NA
MAPNet[25] 76.10±0.6 84.50±1.3 85.20±0.7 NA 84.70±2.2 86.64±1.5
DSRNet[26] 77.60±0.6 85.90±1.3 86.00±0.8 NA 85.30±2.0 87.03±1.5

CLASSNet[4] 74.00±0.5 87.70±1.3 86.20±0.9 84.00±0.6 85.60±2.2 85.69±1.4
FENet[21] 74.20±0.1 88.24±0.2 86.74±0.2 83.98±0.1 85.71±0.1 85.20±0.4
MSTH-Net 71.45±0.6 87.72±1.0 85.65±1.4 81.47±0.6 85.73±2.6 87.45±0.8

Table 1: Single-color Material Recognition (MSTH-Net): We mark the best performance
in blue and the second best performance in red. Accuracy in "Mean±SD%" is reported.
Standard deviation (±SD) marked x.x is not available from prior works.

Input Method GTOS[22] Input Method GTOS[22]

Multi-Color

CNN[24] 82.50±2.8

Multi-Color + Diff.

DAIN[22, 24] 86.20±2.5
DEP[23, 24] 85.80±1.9 TEAN[24] 87.60±2.0

MVSR-Net (9 views) 85.54±2.7 MVSR-Net (9 views) 86.65±2.3
MaterialNet (4 views) 86.20±2.5 Dual MaterialNets (4 views) 87.84±2.1
MaterialNet (9 views) 86.71±2.1 Dual MaterialNets (9 views) 88.41±2.1

Table 2: Multi-color Material Recognition (MSVR-Net and MaterialNet) on GTOS
dataset[22]. Backbone is ResNet18.

posed MSTH-Net with ResNet18 achieves best material recognition accuracy on KTH-TIPS-
2b, FMD and GTOS datasets and second best on GTOS-mobile dataset. MSTH-Net with
ResNet50 achieves best material recognition accuracy on GTOS and GTOS-mobile datasets
and second best on KTH-TIPS-2b.

Varying performance of MSTH-Net over datasets comes from varying image style and
characteristics. Since GTOS and GTOS-mobile images show clean and clear lower, mid, and
higher scale textures, performance improvement of our proposed MSTH-Net is outstanding.
FMD is an object-level dataset and both local surface and global shape of an object are
well observed in an instance. In other words, lower to higher scale textures are distinct
enough to achieve gain by applying multi-scale texture hierarchy. Therefore, MSTH-Net
with ResNet18 shows best accuracy. Although KTH-TIPS-2b dataset consists of images
taken very closely, MSTH-Net shows outstanding performance because the images show
unique local textures. MINC-2500 is a scene-level material dataset. Context information
such as other surrounding objects or background scene help material recognition. MSTH-
Net, however, does not show significant performance improvement on it, since lower scale
image does not reveal surface texture of a material type and higher scale texture contains too
much surrounding context information and our feature hierarchy does not work effectively.
DTD is a texture dataset that does not share a similar global shape within a class and images
of the same class show limited correlations.
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4.2 Material Recognition with MaterialNets
We compare MaterialNets with multiview CNN[24], multiview DEP[23, 24] using multi-
view color images and multiview DAIN[22], multiview TEAN[24] using both multi-view
color and multi-view differential angular images. DEP employs DeepTEN[28] for texture
encoding using residual dictionary learning to capture both orderless texture and local spatial
features. TEAN is dual network that takes differential angular images by adding a reflectance
branch to DEP. DAIN[22] is two-stream convolutional neural networks that use single color
and single differential angular images as inputs and combine feature maps. In multiview
CNN, DEP, TEAN and DAIN, images are fed to weight sharing network(CNN or DEP or
TEAN or DAIN) and material type is inferred by voting in softmax step or pooling features
across viewpoints in the network.

Experimental results on GTOS[22] are summarized in Table 2. Multiview CNN, DEP,
TEAN, and DAIN accept respective optimal number of viewpoints randomly chosen out of
19 views of GTOS. Since our networks is able to extract partial reflectance by sequentially
encoding view-specific features from multiple-views, it outperforms previous studies that
simply pool or vote features among views. In general, accuracy increases and standard
deviation decreases as the number of training and test views increase. Furthermore, when
the number of training and test views are same, accuracy increases. However, when it is
trained with 4 views, test accuracy does not change much along the changes of the number
of test views. Compared to other voting methods in softmax or pooling methods that take
the maximum value of the features extracted at each viewpoint, our networks extract the
correlation of features from multi-view images, exhibiting improving performance as the
number of viewpoints increases.

We use MIW dataset[13] for further validation of MVSR-Net and MaterialNet in Ta-
ble 3. Examples of MIW can be seen in Figure 4. There are 41 classes in MIW dataset
and we group the classes of similar material types into 12 super-classes. The class names
are paper(paper/tissue + cardboard + wallpaper), ceramic, stone(stone + concrete + brick),
wood(wood + cork/corkboard + wicker), fabric(fabric/cloth + fur + carper/rug), glass(glass
+ mirror), granite/marble, metal, painted, plastic-clear, plastic-opaque and tile. We randomly
extract 30 patch(31×31) set from each scene(375×250) for patch-wise classification. Single
patch set consists of 25 patches with varying illumination conditions. We set the label of the
center pixel of a patch as patch label. 25 patches are sorted by increasing order of brightness.
We test our MSTH-Net, MVSR-Net, MaterialNet and Dual MaterialNets with ResNet18 as
backbone. MSTH-Net are using single-illumination patch, and the rest of the networks are
using multi-illumination patches. Due to smaller size of the input patches, MSTH-Net col-
lects only entire-feature Ft to encode texture hierarchy features. Table 3 shows evaluation re-
sults on MIW dataset. Dual MaterialNets with color and difference images show better accu-
racy than single MaterialNet and MSTH-Net results. In smaller size of images where objects

Input Method Accuracy(%)
Single-view Color MSTH-Net 74.24±2.3

Multi-view Color MVSR-Net 82.60±2.1
MaterialNet 84.43±2.1

Multi-view Color + Diff. Dual MVSR-Net 83.17±2.2
Dual MaterialNets 86.21±2.0

Table 3: MaterialNets Material Recognition Results on MIW dataset[13]: ’Diff’ means dif-
ference images.
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can not clearly be observed, intrinsic surface texture of materials are hardly observed. In such
case, material type recognition is very challenging with single-view or single-illumination
of single image. On the other hand, with multi-view condition, our MVSR-Net and Materi-
alNet encodes reflectance of the surface enabling material type recognition even with small
images of little texture clue. Difference images obtained from multi-illumination images
extract texture similar to 3D relief texture based on the difference in the shadow of different
illumination. This is well known characteristic of multi-illumination images that has been
exploited by popular photometric stereo method.

4.3 Ablation Studies

MSTH-Net GTOS FMD KTHAttention Hierarchy
✓ 83.82±2.3 82.34±1.5 85.31±1.7

✓ 84.64±2.1 82.78±1.6 84.93±2.1
✓ ✓ 84.95±2.2 83.17±1.5 86.69±1.4

Table 4: Ablation studies on the effectiveness of texture attention and texture hierarchy in
MSTH-Net

We conduct ablation studies analyzing the effectiveness of texture attention using salient
features and texture hierarchy constructed with LSTM in MSTH-Net as summarized in Table
4. Texture attention is removed from MSTH-Net by discarding salient features and employ-
ing only entire features. With only entire features without attention from salient features that
represent distinguishing local textures from multiple scales, MSTH-Net only encodes global
texture from different scales. Texture hierarchy is removed from MSTH-Net by replacing
LSTM by fully connected (FC) layers concatenating Ht , t = 1, ...,T and feeding them to the
FC layers. Although FC layers extract the correlation of multi-scale textures, LSTM encodes
the sequential correlation from lower scale texture to higher scale texture feature better. Con-
sequentially, in Table 4, MSTH-Net with both texture attention and texture hierarchy shows
best accuracy.

5 Conclusion
We propose MSTH-Net and MVSR-Net extracting view-independent comprehensive multi-
scale texture hierarchy and view-specific surface reflectance features. MaterialNet is pro-
posed combining MSTH-Net and MVSR-Net for material type recognition. Extensive evalu-
ations on six public benchmarks have shown promising performance of our proposed method.
Proposed material recognition method is able to be adopted in various practical applications
where multi-view images can be obtained.
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