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Abstract

Current approaches in Multiple Object Tracking (MOT) rely on the spatio-temporal
coherence between detections combined with object appearance to match objects from
consecutive frames. In this work, we explore MOT using object appearances as the
main source of association between objects in a video, using spatial and temporal pri-
ors as weighting factors. We form initial tracklets by leveraging on the idea that in-
stances of an object that are close in time should be similar in appearance, and build
the final object tracks by fusing the tracklets in a hierarchical fashion. We conduct
extensive experiments that show the effectiveness of our method over three different
MOT benchmarks, MOT17, MOT20, and DanceTrack, being competitive in MOT17
and MOT20 and establishing state-of-the-art results in DanceTrack. Code is available at
https://github.com/NII-Satoh-Lab/MOT_FCG.

1 Introduction
The objective of the Multiple Object Tracking (MOT) task is to estimate the trajectory of a
set of objects (e.g. pedestrians or vehicles) along a video sequence. The objects of interest
must be represented with an accurate bounding box, and keep the associated identity over
time. MOT can be useful in many applications, such as autonomous driving, robotics, or
automatic production of events.

The dominant approach in MOT is tracking-by-detection, a two-step process where, first,
the objects of interest are detected frame-by-frame, and then associated across frames to
form tracks. This approach became feasible thanks to the latest advances in object detection
[11, 13, 19, 26, 27], leading to the current dominant trackers, which use spatio-temporal
priors combined with appearance features as the main source of association.

In this paper, we explore the association of objects by primarily focusing on their ap-
pearance, using spatial and temporal priors as a support to weight object relationships, and
present a simple and adaptable MOT method based on tracklet generation and clustering.
Our tracker, FCG (Feature Combinatorial Grouping), leverages on the idea that a specific
object is prone to have a similar appearance in a temporal neighborhood. Based on this,
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we form high quality tracklets, smaller parts of an object track, for each object in a local
neighborhood, capturing small variations of the object appearance, and cluster the generated
tracklets in a hierarchical way to form the final tracks, taking into account the sequential
nature of a video, without any kind of post-processing or optimization when performing the
tracking.

We conduct extensive experiments to show the validity of our method, and verify the
quality of FCG in three MOT benchmarks, MOT17 [24], MOT20 [10], and DanceTrack
[35], achieving comparable performance against current state-of-the art trackers for MOT17
and MOT20, and setting state-of-the-art results for DanceTrack.

Our contributions in this paper are:

• We explore the effectiveness of focusing on appearance as the main source for associ-
ating objects through time for MOT, and present FCG, a tracker that relies on object
appearance features to form tracks by hierarchically clustering tracklets.

• We show that a fairly simple tracklet association by clustering method, using off-the-
shelf pre-trained models and without any kind of optimization or post-processing, can
perform competitively to current, way more complex, state-of-the-art techniques.

• We achieve state-of-the-art results for the DanceTrack benchmark, while presenting
competitive results in MOT17 and MOT20.

2 Related work
Advances in object detection [11, 13, 26, 27] allowed current tracking methods to rely on
frame-by-frame detections to perform tracking of multiple objects. This led to the current
predominant approach in MOT, tracking-by-detection, which addresses the tracking problem
in two steps: (i) detection of the objects in the scene, and (ii) the association of the detections
through time to form tracks. Simultaneously, object appearance features for Re-Identification
have been highly improved, and have been proven very effective [15, 21, 28, 40].

2.1 Object appearance in MOT
Despite some state-of-the-art MOT methods do not use the object appearance at all [4, 6, 33,
51], relying on motion models to associate close objects between frames, object appearance
is extensively used in MOT. Some MOT methods account indirectly for object appearance
[36, 48, 54], where the motion of objects is inferred using previous detections and image
features, train models to both learn to detect and represent objects at the same time with
multiple output heads [47, 50], using recurrent neural networks [42], attention mechanisms
[7] or correlation operations between convolutional feature maps [12, 41] to encode both mo-
tion and feature information, or even with end-to-end approaches where feature extraction,
affinity estimation, and objects association are refined in a single network [8].

Explicit usage of object appearance is also extensively used in MOT, combining the
spatio-temporal information with object appearance information as a weighting factor [43],
optimizing a graph where the position and feature embedding information form the nodes
and edges [5, 16], or to recover lost tracks by doing re-identification [2, 23].

The key difference between our proposed method and previous works is what is priori-
tized for doing object association, as previous works prioritize spatio-temporal priors or their
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combination with object appearance to associate objects. In this work, we explore using ap-
pearance features to associate the objects as the main source of association, using spatial and
temporal information as a support weighting factor.

2.2 Tracking by tracklet association

Tracklets, introduced in [1], are smaller parts of whole object tracks that, once fused, form
the whole object track. Tracking by associating tracklets is a well established technique
[17], that has had far less attention than other of�ine tracking techniques such as graph
optimization considering individual detections. One common assumption in tracking by
associating tracklets is to consider tracklets as a robust temporal representation of the object.
Once the initial tracklets are built, they are associated to form the �nal tracks.

Some methods associate tracklets by using a MAP (Maximum A Posteriory) approach,
conditioning the overall result every time a tracklet is fused [17], cluster tracklets based on
color, spatial and temporal attributes [37], form tracks by clustering objects using spatial
cues [31, 52], gradually add similar objects to the initial tracklets [45], or treat tracklets as
the nodes of a graph, and the similarity between tracklets as the vertexes [9, 22, 39, 49].

Tracklet association methods are usually treated as an optimization problem, whether it
is iteratively updating cluster assignments [31, 37, 45], using a graph formulation with the
subsequent optimization [9, 22, 39, 49, 52], or re-training CNN networks to adapt ReID fea-
tures to new sequences [22]. Our method hierarchically fuses tracklets based on the objects
appearance considering the sequential nature of video object trackingwithout requiring any
type of optimization or post-processingwithin the tracking pipeline.

3 Method
FCG leverages on the idea that instances of the same object have similar appearance in a
temporal neighborhood. It consists on two stages: the �rst stage generates an initial set of
short, but reliable, tracklets, and the second stage fuses these tracklets over time by clustering
them in a sequentially-guided hierarchical way, naturally leading to the �nal object tracks.
To generate tracklets and further fuse them, we use the implementation [38] of UPGMA
(Unweighted Pair Group Method with Arithmetic mean) [30], which iteratively fuses pairs
of clusters, forming a hierarchy. In Figure 1 we show FCG pipeline.

Tracklets
A tracklet T is de�ned as a set of instances of a speci�c object being tracked between

two time instants. The union of the object tracklets through a whole video sequence will
form the �nal object track. To form the initial set of tracklets, we cluster the object instances
present in the frames contained in a non-overlapping temporal windowW of sizet . For a
video sequence, we will haveN possible temporal windows.

Lifted frames
To hierarchically cluster tracklets, we introduce the concept oflifted frames, consisting

on arti�cial time instants that contain tracklets instead of individual, discrete, detections.
Formally, we de�ne a lifted frameF i

[n;m] as the set of tracklets that contain detections from
timet = n� t to t = m� t , wherei 2 [0;N] 2 N corresponds the current level of the hierarchy,
andn 2 [0;N � 1] andm2 [1;N]; f n;m2 Njm> ng correspond to the lifted frame temporal
indexes. Note that each trackletTk = F i;k

[n;m] present in a lifted frameF i
[n;m] has a length

l 2 [1; (m� n)t ].
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Figure 1: We track objects by clustering their appearance features. We build tracklets to
have a robust representation of the objects in a temporal neighborhood, while capturing
small variations of the object appearance, and hierarchically cluster the tracklets to form the
�nal tracks.

3.1 Stage zero: extracting the data

As a pre-processing step we �rst detect all the objects in a video using a given object detector,
in this work YOLOX (You Only Look Once X) [13], and extract their appearance features
with a feature-extractor network, in this case SBS (Stronger Baseline of Specials) [14].

3.2 First stage: tracklet generation

Once we have all the detections in each frame and their associated appearance feature vec-
tors, we proceed to generate the initial set of tracklets for the objects of interest. These
tracklets will be a representation of an object in a temporal neighborhood, capturing small
variations of the object appearance that will be key to form the �nal tracks.

To compare two object instances,Ok andOp, we use the cosine distance over the corre-
sponding appearance features,hk andhp 2 R2048.

d(Ok;Op) = 1�
hk> hp

khkkkhpk
(1)

To generate tracklets, we cluster object instances within a temporal windowW of sizet .
We constrain the fusion of objects to different frames, i.e., two objects from the same frame
will not be able to be clustered in the same tracklet. In this work, we useW = 6, and set the
cluster fusion threshold to 0:055.
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3.3 Second stage: tracklet clustering

Once the object tracklets are formed for each lifted frameF1
[n;n+ 1], for n 2 [0;N � 1], we fuse

them in a hierarchical way. Whenever a set of lifted frames are fused, i.e., the tracklets in the
lifted frames are clustered together, the current level of the hierarchyi is increased by 1.

To ef�ciently compare two tracklets,Tk = F i;k
[n;m] andTq = F i;q

[u;v], we summarize the col-

lection of appearance feature vectors present in each tracklet,H k, H q, as their element-wise
median, and compute the cosine distance between both.

d(Tk;Tq) = 1�
h̃k> h̃q

kh̃kkkh̃qk
; h̃k = Med(H k) ; h̃q = Med(H q) (2)

Generically, we de�ne the fusion of two lifted frames as the clustering of the union of
the tracklets contained in each lifted frame.

F i+ 1
[n;m][ [u;v] = F i

[n;m] [ F i
[u;v] (3)

For the MOT setting, we constrain the fusion to consecutive lifted frames, following the
timeline of the video sequence. This is:

F i+ 1
[n;u] = F i

[n;m] [ F i
[m+ 1;u] ; f n < m< ug (4)

In the ablation study of Sec. 4.2 we further analyse the impact of this weighting.
By iteratively clustering tracklets by fusing lifted frames, we naturally get to a point

where all tracklets are de�ned within a single lifted frame. This happens atFN
[0;N], where the

clustering of tracklets is at the top levelN of the hierarchy. We assign an ID to each tracklet,
becoming the �nal track for each tracked object.

3.4 Multiple object tracking

We use FCG for the MOT task given the natural way the clustered tracklets form the �-
nal tracks of objects. Furthermore, we consider some additions with regards to the MOT
challenge that can be embedded into the clustering scheme.

Temporal coherence.It is a common practice in MOT trackers to terminate the tracking
of an object if no new detections are associated to that object within a speci�ed time.

We incorporate a similar idea to FCG so that, if two trackletsTk andTq are further than
a speci�ed temporal distanceKT , given the last detection inTk, Bk, and the �rst detection
in Tq, Bq, the fusion between the nodes of the hierarchy will be harder, but not impossible,
as FCG relies on appearance features to associate tracks, being able to recover from longer-
term occlusions. We achieve this by multiplying the distance between two tracklets that
are further thanKT by a constantl T � 1, making the two trackletsl T times harder to be
associated, only allowing very similar tracklets to be fused.

d0(Tk;Tq) = d(Tk;Tq) � l T ; l T =

(
1 Dt(Bk;Bq) � KT

cT Dt(Bk;Bq) > KT
(5)

In this work, we set the constant value tocT = 4, andKT = 40.
Spatial coherence.As many objects share similar features, we also take into account

spatial information, making closer objects easier to fuse, while constraining the fusion of
farther objects.
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For two trackletsTk andTq, we compute both the IoU (Intersection over Union) and a
L2 distance normalized w.r.t. bounding box size between the last detection inTk, Bk, and
the �rst detection inTq, Bq. We multiply the original distance between trackletsd(Tk;Tq)
by l C andl F , corresponding to close and far objects respectively.

d0(Tk;Tq) = d(Tk;Tq) � l C � l F (6)

l C = min(1;dIoU + off); l F =

(
1 dbox(Bk;Bq) � KF

cF dbox(Bk;Bq) > KF

We set off= 0:15 to avoid multiplying by 0 the distance when two objects are completely
overlapped,cF = 2 to make spatially far detections twice as hard to be fused, andKF = 2 as
the normalized distance between bounding boxes. Note thatl C 2 [off;1], easing the fusion
between tracklets, andl C 2 f 1;cFg, making them harder to fuse, but not impossible. We
convert the IoU betweenBk andBq to the distancedIoU,

dIoU(Bk;Bq) = 1�
Bk \ Bq

Bk [ Bq (7)

and compute the normalised displacement betweenBk andBq as the distancedbox between
their extreme points (left, top, right, bottom),

dbox(Bk;Bq) =
d1 + d2

2
(8)

whered1 corresponds to the distance between the left-top corners of the bounding boxesBk

andBq, andd2 to the distance between the right-bottom corners of the bounding boxesBk and
Bq. Both distances are normalized by the average of the bounding boxes width and height to
have in consideration the size of the bounding box when computing the displacement.
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With this, the distance between trackletsTk andTq can be weighted by both temporal
and spatial priors.

d0(Tk;Tq) = d(Tk;Tq) � l T � l C � l F (9)

Motion estimation. We integrate a simple motion estimation, consisting on a constant
velocity assumption, to help in the spatial coherence. This motion is calculated as the dif-
ference between the previoust � 1 and currentt positions of a bounding boxB existing in a
tracklet, and applied to displaceB to the next time stept + 1.
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4 Experimental evaluation

Datasets.Experiments are performed in three different MOT datasets: MOT17 [24], MOT20
[10], and DanceTrack [35]. MOT17 and MOT20 address the problem of tracking pedestrians
in the wild, while DanceTrack focuses on a group of dancers on a stage. Following the work
in MOT17, MOT20 has a much larger density of pedestrians in the scene, longer sequences,
and the camera is set further away. In DanceTrack, where the setting is much more artistic,
the main dif�culties consist on the amount of very similarly dressed dancers, appearance
changes due to zooms or moving cameras, the amount of occlusions and grouping, and the
diverse motion, which, in contrast with MOT17 and MOT20, can be much more random.

Figure 2: We test FCG on three different benchmarks. MOT17 and MOT20 focus on tracking
pedestrians in the wild, and DanceTrack on tracking dancers on a stage.

Metrics. To evaluate our method, we use the main established metrics for MOT, which
are HOTA [20], built as the combination of DetA (Detection Accuracy score) and AssA
(Association Accuracy score), MOTA [3], and IDF1 [29]. For all metrics, higher is better.

Implementation details. To detect the objects in the scene we use YOLOX [13], pre-trained
with COCO [18] and �ne-tuned on each dataset. In this work, we use a detector threshold
of 0:7. For the extraction of appearance features we use SBS [14] trained with Market1501
[53]. We conducted experiments using different detectors and feature extraction networks in
Sec. 4.2. For all benchmarks, we build the initial tracklets from detections within a sliding
window of 6 frames.

If not stated otherwise, for MOT17 and MOT20, where pedestrians may leave the scene
to never reappear, we use the temporal constraint and motion estimation introduced in Sec.
3.4. For DanceTrack, where is usual for dancers to reappear in the scene, we don't use
neither the temporal constraint nor motion estimation. For all benchmarks, we use the spatial
coherence constraints, also introduced in Sec. 3.4, where two tracklets are easier or more
dif�cult to fuse depending on the spatial distance between their corresponding detections.

4.1 Comparison to the state-of-the-art

In Table 1, we report results of the performance of FCG on the test set of each respective
benchmark, and compare it to other state-of-the-art methods. All method use their own,
private, detectors. The results for each dataset are presented as the overall results for all
sequences.


