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Abstract

Current approaches in Multiple Object Tracking (MOT) rely on the spatio-temporal
coherence between detections combined with object appearance to match objects from
consecutive frames. In this work, we explore MOT using object appearances as the
main source of association between objects in a video, using spatial and temporal pri-
ors as weighting factors. We form initial tracklets by leveraging on the idea that in-
stances of an object that are close in time should be similar in appearance, and build
the final object tracks by fusing the tracklets in a hierarchical fashion. We conduct
extensive experiments that show the effectiveness of our method over three different
MOT benchmarks, MOT17, MOT20, and DanceTrack, being competitive in MOT17
and MOT?20 and establishing state-of-the-art results in DanceTrack. Code is available at
https://github.com/NII-Satoh-Lab/MOT_FCG.

1 Introduction

The objective of the Multiple Object Tracking (MOT) task is to estimate the trajectory of a
set of objects (e.g. pedestrians or vehicles) along a video sequence. The objects of interest
must be represented with an accurate bounding box, and keep the associated identity over
time. MOT can be useful in many applications, such as autonomous driving, robotics, or
automatic production of events.

The dominant approach in MOT is tracking-by-detection, a two-step process where, first,
the objects of interest are detected frame-by-frame, and then associated across frames to
form tracks. This approach became feasible thanks to the latest advances in object detection
[11, 13, 19, 26, 27], leading to the current dominant trackers, which use spatio-temporal
priors combined with appearance features as the main source of association.

In this paper, we explore the association of objects by primarily focusing on their ap-
pearance, using spatial and temporal priors as a support to weight object relationships, and
present a simple and adaptable MOT method based on tracklet generation and clustering.
Our tracker, FCG (Feature Combinatorial Grouping), leverages on the idea that a specific
object is prone to have a similar appearance in a temporal neighborhood. Based on this,
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we form high quality tracklets, smaller parts of an object track, for each object in a local
neighborhood, capturing small variations of the object appearance, and cluster the generated
tracklets in a hierarchical way to form the final tracks, taking into account the sequential
nature of a video, without any kind of post-processing or optimization when performing the
tracking.

We conduct extensive experiments to show the validity of our method, and verify the
quality of FCG in three MOT benchmarks, MOT17 [24], MOT20 [10], and DanceTrack
[35], achieving comparable performance against current state-of-the art trackers for MOT17
and MOT?20, and setting state-of-the-art results for DanceTrack.

Our contributions in this paper are:

* We explore the effectiveness of focusing on appearance as the main source for associ-
ating objects through time for MOT, and present FCG, a tracker that relies on object
appearance features to form tracks by hierarchically clustering tracklets.

¢ We show that a fairly simple tracklet association by clustering method, using off-the-
shelf pre-trained models and without any kind of optimization or post-processing, can
perform competitively to current, way more complex, state-of-the-art techniques.

* We achieve state-of-the-art results for the DanceTrack benchmark, while presenting
competitive results in MOT17 and MOT?20.

2 Related work

Advances in object detection [11, 13, 26, 27] allowed current tracking methods to rely on
frame-by-frame detections to perform tracking of multiple objects. This led to the current
predominant approach in MOT, tracking-by-detection, which addresses the tracking problem
in two steps: (i) detection of the objects in the scene, and (ii) the association of the detections
through time to form tracks. Simultaneously, object appearance features for Re-Identification
have been highly improved, and have been proven very effective [15, 21, 28, 40].

2.1 Object appearance in MOT

Despite some state-of-the-art MOT methods do not use the object appearance at all [4, 6, 33,
51], relying on motion models to associate close objects between frames, object appearance
is extensively used in MOT. Some MOT methods account indirectly for object appearance
[36, 48, 54], where the motion of objects is inferred using previous detections and image
features, train models to both learn to detect and represent objects at the same time with
multiple output heads [47, 50], using recurrent neural networks [42], attention mechanisms
[7] or correlation operations between convolutional feature maps [12, 41] to encode both mo-
tion and feature information, or even with end-to-end approaches where feature extraction,
affinity estimation, and objects association are refined in a single network [8].

Explicit usage of object appearance is also extensively used in MOT, combining the
spatio-temporal information with object appearance information as a weighting factor [43],
optimizing a graph where the position and feature embedding information form the nodes
and edges [5, 16], or to recover lost tracks by doing re-identification [2, 23].

The key difference between our proposed method and previous works is what is priori-
tized for doing object association, as previous works prioritize spatio-temporal priors or their
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combination with object appearance to associate objects. In this work, we explore using ap-
pearance features to associate the objects as the main source of association, using spatial and
temporal information as a support weighting factor.

2.2 Tracking by tracklet association

Tracklets, introduced in [1], are smaller parts of whole object tracks that, once fused, form
the whole object track. Tracking by associating tracklets is a well established technique
[17], that has had far less attention than other offline tracking techniques such as graph
optimization considering individual detections. One common assumption in tracking by
associating tracklets is to consider tracklets as a robust temporal representation of the object.
Once the initial tracklets are built, they are associated to form the final tracks.

Some methods associate tracklets by using a MAP (Maximum A Posteriory) approach,
conditioning the overall result every time a tracklet is fused [17], cluster tracklets based on
color, spatial and temporal attributes [37], form tracks by clustering objects using spatial
cues [31, 52], gradually add similar objects to the initial tracklets [45], or treat tracklets as
the nodes of a graph, and the similarity between tracklets as the vertexes [9, 22, 39, 49].

Tracklet association methods are usually treated as an optimization problem, whether it
is iteratively updating cluster assignments [31, 37, 45], using a graph formulation with the
subsequent optimization [9, 22, 39, 49, 52], or re-training CNN networks to adapt RelD fea-
tures to new sequences [22]. Our method hierarchically fuses tracklets based on the objects
appearance considering the sequential nature of video object tracking without requiring any
type of optimization or post-processing within the tracking pipeline.

3 Method

FCG leverages on the idea that instances of the same object have similar appearance in a
temporal neighborhood. It consists on two stages: the first stage generates an initial set of
short, but reliable, tracklets, and the second stage fuses these tracklets over time by clustering
them in a sequentially-guided hierarchical way, naturally leading to the final object tracks.
To generate tracklets and further fuse them, we use the implementation [38] of UPGMA
(Unweighted Pair Group Method with Arithmetic mean) [30], which iteratively fuses pairs
of clusters, forming a hierarchy. In Figure 1 we show FCG pipeline.

Tracklets

A tracklet T is defined as a set of instances of a specific object being tracked between
two time instants. The union of the object tracklets through a whole video sequence will
form the final object track. To form the initial set of tracklets, we cluster the object instances
present in the frames contained in a non-overlapping temporal window W of size 7. For a
video sequence, we will have N possible temporal windows.
Lifted frames

To hierarchically cluster tracklets, we introduce the concept of lifted frames, consisting
on artificial time instants that contain tracklets instead of individual, discrete, detections.
Formally, we define a lifted frame F[;_’m] as the set of tracklets that contain detections from
timet =n-ttot =m- 1, where i € [0,N] € N corresponds the current level of the hierarchy,
and n € [0,N — 1] and m € [1,N],{n,m € N|m > n} correspond to the lifted frame temporal
indexes. Note that each tracklet 7% = F*

] present in a lifted frame Félm] has a length
le(l,(m—n)T].
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Figure 1: We track objects by clustering their appearance features. We build tracklets to
have a robust representation of the objects in a temporal neighborhood, while capturing
small variations of the object appearance, and hierarchically cluster the tracklets to form the
final tracks.

3.1 Stage zero: extracting the data

As a pre-processing step we first detect all the objects in a video using a given object detector,
in this work YOLOX (You Only Look Once X) [13], and extract their appearance features
with a feature-extractor network, in this case SBS (Stronger Baseline of Specials) [14].

3.2 First stage: tracklet generation

Once we have all the detections in each frame and their associated appearance feature vec-
tors, we proceed to generate the initial set of tracklets for the objects of interest. These
tracklets will be a representation of an object in a temporal neighborhood, capturing small
variations of the object appearance that will be key to form the final tracks.

To compare two object instances, OF and 0P, we use the cosine distance over the corre-
sponding appearance features, h* and hP € R2048,

hkT hP

d(o*, 0P =1— ————
[[h[[] [l

6]

To generate tracklets, we cluster object instances within a temporal window W of size 7.
We constrain the fusion of objects to different frames, i.e., two objects from the same frame
will not be able to be clustered in the same tracklet. In this work, we use W = 6, and set the
cluster fusion threshold to 0.055.


Citation
Citation
{Ge, Liu, Wang, Li, and Sun} 2021

Citation
Citation
{He, Liao, Liu, Liu, Cheng, and Mei} 2020


GIRBAU, MARQUES, SATOH: MOT FROM APPEARANCE 5

3.3 Second stage: tracklet clustering

Once the object tracklets are formed for each lifted frame F[rll 1) forn € [0,N — 1], we fuse
them in a hierarchical way. Whenever a set of lifted frames are fused, i.e., the tracklets in the
lifted frames are clustered together, the current level of the hierarchy i is increased by 1.

To efficiently compare two tracklets, T = F[il’km] and 79 = F[;qv] we summarize the col-
lection of appearance feature vectors present in each tracklet, HX, 9, as their element-wise

median, and compute the cosine distance between both.
ﬁkTﬁq -
[k ||

Generically, we define the fusion of two lifted frames as the clustering of the union of
the tracklets contained in each lifted frame.

d(T*, 19) = = Med(#¥) , h9 = Med(#Y) 2)

i+1 _
F[n,m]u[u,v] - F[ U F[u V] (3)

n,m)|

For the MOT setting, we constrain the fusion to consecutive lifted frames, following the
timeline of the video sequence. This is:

Fit

[, u]

m+1,u] {n<m<u} (4)

= Fum) U,
In the ablation study of Sec. 4.2 we further analyse the impact of this weighting.

By iteratively clustering tracklets by fusing lifted frames, we naturally get to a point
where all tracklets are defined within a single lifted frame. This happens at F[o N where the
clustering of tracklets is at the top level N of the hierarchy. We assign an ID to each tracklet,

becoming the final track for each tracked object.

3.4 Multiple object tracking

We use FCG for the MOT task given the natural way the clustered tracklets form the fi-
nal tracks of objects. Furthermore, we consider some additions with regards to the MOT
challenge that can be embedded into the clustering scheme.

Temporal coherence. It is a common practice in MOT trackers to terminate the tracking
of an object if no new detections are associated to that object within a specified time.

We incorporate a similar idea to FCG so that, if two tracklets T* and T9 are further than
a specified temporal distance K7, given the last detection in T, B, and the first detection
in 79, B4, the fusion between the nodes of the hierarchy will be harder, but not impossible,
as FCG relies on appearance features to associate tracks, being able to recover from longer-
term occlusions. We achieve this by multiplying the distance between two tracklets that
are further than K7 by a constant Ay > 1, making the two tracklets A7 times harder to be
associated, only allowing very similar tracklets to be fused.

1 At(B*,B?) <Ky

5
cr  At(BXBY) > Ky ©)

d/(Tvaq) :d(TkaTq)'A'Ta AT = {
In this work, we set the constant value to ¢y = 4, and K7 = 40.
Spatial coherence. As many objects share similar features, we also take into account
spatial information, making closer objects easier to fuse, while constraining the fusion of
farther objects.
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For two tracklets 7% and T4, we compute both the IoU (Intersection over Union) and a
L2 distance normalized w.r.t. bounding box size between the last detection in T*, BX and
the first detection in 79, BY. We multiply the original distance between tracklets d(T*,T4)
by A¢ and Ag, corresponding to close and far objects respectively.

d'(T*, 1) = d(T*, T9) - Ac - Ar (6)

k

Ac = min(1,diu +off), Ap = {1 doox (B", BY) < Kr

cr  doox(B*,BY) > KF
We set off = 0.15 to avoid multiplying by O the distance when two objects are completely
overlapped, cr = 2 to make spatially far detections twice as hard to be fused, and Kr = 2 as
the normalized distance between bounding boxes. Note that A¢ € [off, 1], easing the fusion
between tracklets, and A¢ € {1,cr}, making them harder to fuse, but not impossible. We
convert the IoU between BX and B? to the distance djou,

BN B?
k pgy — 1 _
dIOU(B 7B ) - 1 Bk UBq (7)

and compute the normalised displacement between B and BY as the distance dy,ox between
their extreme points (left, top, right, bottom),

dyox (B*,BY) =

di+d
8
5 ®)
where d; corresponds to the distance between the left-top corners of the bounding boxes B*
and B?, and d5 to the distance between the right-bottom corners of the bounding boxes B* and
B1. Both distances are normalized by the average of the bounding boxes width and height to
have in consideration the size of the bounding box when computing the displacement.

2 2
di = Bk{{eft - f lef B {{Op B ?Op
Bwidth +Bwidth thnght+th1ght
2 - 2
Bk — B ’ Bk _p4 ’
dy = rlkght right + kbot bot
Bidtn _;Bwuhh Bicight ;Bhelght

With this, the distance between tracklets 7% and 79 can be weighted by both temporal
and spatial priors.

d'(TF, 1) = d(T*,T9) - A7 - Ac - Ar )

Motion estimation. We integrate a simple motion estimation, consisting on a constant
velocity assumption, to help in the spatial coherence. This motion is calculated as the dif-
ference between the previous  — 1 and current 7 positions of a bounding box B existing in a
tracklet, and applied to displace B to the next time step ¢ + 1.
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4 Experimental evaluation

Datasets. Experiments are performed in three different MOT datasets: MOT17 [24], MOT20
[10], and DanceTrack [35]. MOT17 and MOT?20 address the problem of tracking pedestrians
in the wild, while DanceTrack focuses on a group of dancers on a stage. Following the work
in MOT17, MOT20 has a much larger density of pedestrians in the scene, longer sequences,
and the camera is set further away. In DanceTrack, where the setting is much more artistic,
the main difficulties consist on the amount of very similarly dressed dancers, appearance
changes due to zooms or moving cameras, the amount of occlusions and grouping, and the
diverse motion, which, in contrast with MOT17 and MOT?20, can be much more random.

DanceTrack

Figure 2: We test FCG on three different benchmarks. MOT17 and MOT?20 focus on tracking
pedestrians in the wild, and DanceTrack on tracking dancers on a stage.

Metrics. To evaluate our method, we use the main established metrics for MOT, which
are HOTA [20], built as the combination of DetA (Detection Accuracy score) and AssA
(Association Accuracy score), MOTA [3], and IDF1 [29]. For all metrics, higher is better.

Implementation details. To detect the objects in the scene we use YOLOX [13], pre-trained
with COCO [18] and fine-tuned on each dataset. In this work, we use a detector threshold
of 0.7. For the extraction of appearance features we use SBS [14] trained with Market1501
[53]. We conducted experiments using different detectors and feature extraction networks in
Sec. 4.2. For all benchmarks, we build the initial tracklets from detections within a sliding
window of 6 frames.

If not stated otherwise, for MOT17 and MOT?20, where pedestrians may leave the scene
to never reappear, we use the temporal constraint and motion estimation introduced in Sec.
3.4. For DanceTrack, where is usual for dancers to reappear in the scene, we don’t use
neither the temporal constraint nor motion estimation. For all benchmarks, we use the spatial
coherence constraints, also introduced in Sec. 3.4, where two tracklets are easier or more
difficult to fuse depending on the spatial distance between their corresponding detections.

4.1 Comparison to the state-of-the-art

In Table 1, we report results of the performance of FCG on the test set of each respective
benchmark, and compare it to other state-of-the-art methods. All method use their own,
private, detectors. The results for each dataset are presented as the overall results for all
sequences.
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MOT17 [24] MOT20 [10] DanceTrack [35]
HOTA DetA AssA MOTA IDFI|HOTA DetA AssA MOTA IDFI |HOTA DetA AssA MOTA IDFI
CenterTrack [54]] 52.2 538 51.0 678 64.7| - . N T [418 781 226 868 357
FairMOT [50] | 59.3 60.9 58.0 73.7 72.3| 546 547 547 61.8 673|397 667 23.8 822 408
QDTrack [25] | 53.9 55.6 52.7 68.7 663| - . - - 1457 721 292 830 4438
TransTrack [34] | 54.1 61.6 47.9 752 63.5| 489 533 452 650 594|455 759 275 834 452
TraDes [44] 52,7 552 50.8 69.1 639| - - - - 1433 745 254 862 412
MOTR [48] 55.1 562 542 674 67.0] 43.6 518 37.0 59.1 499|484 71.8 327 792 46.1
Trackformer [23]| 57.3 609 54.1 74.1 68.0| 547 56.7 53.0 68.6 657 - . - -
ReMOT [46] 59.7 628 57.1 77.0 72.0| 612 639 587 774 7T3.1| - - . .
CrowdTrack [32]| 60.3 61.5 593 75.6 73.6| 550 57.7 526 707 682| - - - -
MAA [33] 620 642 602 794 759|573 597 551 739 712| - . . .
BYTE [51] 631 645 62.0 803 77.3| 61.3 634 59.6 77.8 752|477 71.0 32.1 89.6 53.9
FCG (Ours) 62.6 622 634 767 717|573 567 58.1 68.0 69.7| 48.7 79.8 29.9 89.9 46.5

Methods

Table 1: Comparison between our method, FCG, to the state-of-the-art on the test set of
MOT17, MOT?20, and DanceTrack. Results of all methods over private detections.

By comparing to other state-of-the-art results, FCG shows that similar tracking perfor-
mance can be achieved by using appearance between objects as the basic source of infor-
mation to associate objects over time, with a much simpler technique and without the need
of any kind of optimization or post-processing when performing the tracking. This raises
the intuition that having strong object information, in this case detections and person re-
identification features, can be as important as the tracking method itself.

Overall, FCG presents competitive results compared to other methods on MOT17 and
MOT?20 datasets, achieving state-of-the-art results for the DanceTrack benchmark.

4.2 Analysis

Design choices for tracklet generation

In Figure 3 we highlight the effect in performance when choosing different sizes of the
temporal window W to build the initial tracklets. For all benchmarks, there is a similar
performance when forming the tracklets within temporal windows of size W =2to W =6
frames, starting to decrease from W = 7 for the DanceTrack dataset, and from W = 15 for
MOT17 and MOT20. This is due to the appearance change in the person being tracked
when considering longer tracklets, as many false positives can be added to the tracklet. For
all benchmarks, tracking by directly clustering individual detections was computationally
unfeasible. The same applies to window sizes of W =2 and W = 3 in MOT20, where large
amount of elements to be tracked are present.

100 MOT17 MOT20 Dancetrack
75 ~e 33—
> »> >
50 W HOTA “‘..0.0.,.’."
W DetA
25 AssA

2 3 4 6 7 10 15 30 40 50 100 4 6 7 10 15 30 40 50 100 2 3 4 6 7 10 15 30 40 50 100
Window size Window size Window size

Figure 3: FCG tracking performance for tracklet construction over different window sizes.
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MOT17 MOT20 DanceTrack
HOTA DetA AssA MOTA IDF1 |HOTA DetA AssA MOTA IDF1|HOTA DetA AssA MOTA IDF1
61.6 772 49.6 86.6 64.1| 336 795 143 914 277|462 778 27.6 828 41.6

CSMT

v 676 772 59.6 867 719|433 795 237 91.8 40.1| 418 779 225 828 370
v v 719 773 672 873 774 | 584 798 429 924 57.0| 500 772 325 875 518
Vv v 724 775 680 873 782| 582 798 424 924 562 | 489 772 31.1 874 508
v v 723 772 68.0 867 79.0| 57.6 795 419 918 625|389 778 196 829 334
v v v 724 775 680 873 782| 748 79.8 701 924 854 | 489 772 31.1 874 508
vV v v|763 715 754 813 851|746 798 698 924 852| 49.1 773 314 875 489

Table 2: Ablations on FCG. C stands for Consecutive clustering of tracklets, S for Spatial
coherence, M for Motion estimation, and T for Temporal coherence.

Ablation study

We perform a set of ablations to FCG, considering the enhancements presented in Sec.
3.4, and report the results in Table 2. Throughout the ablation, detection-based scores (DetA
and MOTA) are very similar. This is due to be using all detections, without adding or dis-
carding any, being the small variations related to ID switching. For this, we only highlight
the overall score, HOTA, and the scores related to the association, AssA and IDF1.

First, comparing FCG baselines (first two rows in Table 2), we highlight the fact that
following a consecutive (C) order when clustering tracklets is important for MOT17 and
MOT?20, given the sequential nature of the pedestrian movement, but not for DanceTrack,
due to the random dance formation changes, combined with the resemblance of the dancers,
producing many ID switches between tracks during transitions.

Spatial and temporal enhancements do not apply to the non-consecutive baseline due
to the need of spatio-temporal coherence when comparing the detections in tracklets. To
the FCG baseline (second row in Table 2), considering spatial (S) coherence is key due to
the amount of frames where the same object overlaps within a video sequence. Combining
spatial and a simple Motion (M) estimation, there is a small improvement in MOT17, and
small decay for MOT20 and DanceTrack, probably due to the simplicity of the motion model.

On the other hand, temporal (T) coherence provides a considerable improvement in the
pedestrian datasets, MOT17 and MOT20, and a small decay for DanceTrack. This is also due
to the nature of the datasets as, in MOT17 and MOT?20, pedestrians may leave the scene to
never reappear, while in DanceTrack dancers are usually always present in the video, even if
they are occluded for a long time. We highlight the fact that MOT?20 has a staggering increase
in 31.5 points in HOTA score when using spatial (S) and temporal (T) coherence during
the clustering of tracklets. Weighting the object associations with spatio-temporal priors is
specially needed in this dataset due to the high density of pedestrians in the scene, making
the correct assignment difficult, combined with their small size due to camera positioning.

Low fps setting

A problem that current state-of-the-art trackers face comes when using them in low
frames per second (fps) frameworks. We show this in Figure 4, where we tested three MOT
trackers, BYTE [51], Trackformer [23], and FCG -this work-, in the MOT17 [24] training
set. As the videos have different fps, we sub-sampled them by using a sampling ratio that
ranges from 2, corresponding to half the original video fps -e.g. from 30 fps to 15 fps-, to
30, which corresponds to 1/30 of the original video -e.g. from 30 fps to 1 fps-.

From the results, FCG seems to be more robust to lower fps settings than BYTE or Track-
former. With a performance of 62.1 points of HOTA score on the most extreme sampling, 1
frame every 30 of the original video, FCG outperforms the other trackers, BYTE (44.6) and
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Trackformer (50.3). This comes as a side effect of the object association by using appearance
features, and only using spatial and temporal priors as a weighting factor.

® FCG ® BYTE Trackformer

80 | 6.3 HOTA 100 MOTA 100 IDF1
90.3

74.3
60 l62.1 743 &9 71.5 63.1
\]'3 60 \1.5 60 \5‘“6
44.6 50.8

404 404 404
1 2 4 8 10 15 20 25 30 1 2 4 8 10 15 20 25 30 1 2 4 8 10 15 20 25 30

Videos sampling ratio Videos sampling ratio Videos sampling ratio

Figure 4: Low fps video setting experiment for state-of-the-art MOT trackers.

MOT20-03 MOT17-09

DanceTrack-5

Figure 5: Qualitative results of FCG tracking for three sequences of the tested benchmarks,
MOT17, MOT20 and DanceTrack. Same color corresponds to the same ID.

5 Conclusions

In this paper we explore multiple object tracking using object appearance as the principal
element for the object association step, and present FCG, a MOT tracker that leverages on
the idea that a specific object is similar in a temporal neighborhood to generate tracklets,
and cluster them in a hierarchical way to form the final object tracks. While being a much
simpler method than other current MOT trackers, FCG achieves state-of-the-art performance
on the DanceTrack benchmark, and presents competitive results in both MOT17 and MOT20
datasets.



GIRBAU, MARQUES, SATOH: MOT FROM APPEARANCE 11

References

(1]

[4]

[10]

(11]

[12]

Jerome Berclaz, Francois Fleuret, and Pascal Fua. Robust people tracking with global
trajectory optimization. In 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), volume 1, pages 744—750. IEEE, 2006.

Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe. Tracking without bells and
whistles. In Proceedings of the IEEE International Conference on Computer Vision,
pages 941-951, 2019.

Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking perfor-
mance: the clear mot metrics. EURASIP Journal on Image and Video Processing, 2008:
1-10, 2008.

Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Simple online
and realtime tracking. In 2016 IEEE International Conference on Image Processing
(ICIP), pages 3464-3468. IEEE, 2016.

Guillem Brasé and Laura Leal-Taixé. Learning a neural solver for multiple object
tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6247-6257, 2020.

Long Chen, Haizhou Ai, Zijie Zhuang, and Chong Shang. Real-time multiple peo-
ple tracking with deeply learned candidate selection and person re-identification. In
2018 IEEFE international conference on multimedia and expo (ICME), pages 1-6. IEEE,
2018.

Long Chen, Haizhou Ai, Rui Chen, and Zijie Zhuang. Aggregate tracklet appearance
features for multi-object tracking. IEEE Signal Processing Letters, 26(11):1613-1617,
2019.

Peng Chu and Haibin Ling. Famnet: Joint learning of feature, affinity and multi-
dimensional assignment for online multiple object tracking. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 6172-6181, 2019.

Peng Dai, Renliang Weng, Wongun Choi, Changshui Zhang, Zhangping He, and Wei
Ding. Learning a proposal classifier for multiple object tracking. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2443—
2452, 2021.

Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers, Ian
Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé. Mot20: A benchmark for
multi object tracking in crowded scenes. arXiv preprint arXiv:2003.09003, 2020.

Kaiwen Duan, Song Bai, Lingxi Xie, Honggang Qi, Qingming Huang, and Qi Tian.
Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 6569—-6578, 2019.

Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Detect to track and track
to detect. In Proceedings of the IEEE International Conference on Computer Vision,
pages 3038-3046, 2017.



12

GIRBAU, MARQUES, SATOH: MOT FROM APPEARANCE

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo
series in 2021. arXiv preprint arXiv:2107.08430, 2021.

Lingxiao He, Xingyu Liao, Wu Liu, Xinchen Liu, Peng Cheng, and Tao Mei.
Fastreid: A pytorch toolbox for general instance re-identification. arXiv preprint
arXiv:2006.02631, 2020.

Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for
person re-identification. arXiv preprint arXiv:1703.07737, 2017.

Andrea Hornakova, Roberto Henschel, Bodo Rosenhahn, and Paul Swoboda. Lifted
disjoint paths with application in multiple object tracking. In International Conference
on Machine Learning, pages 4364-4375. PMLR, 2020.

Chang Huang, Bo Wu, and Ramakant Nevatia. Robust object tracking by hierarchical
association of detection responses. In European Conference on Computer Vision, pages
788-801. Springer, 2008.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dolldr, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740-755. Springer, 2014.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European
conference on computer vision, pages 21-37. Springer, 2016.

Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas Geiger, Laura
Leal-Taixe, and Bastian Leibe. Hota: A higher order metric for evaluating multi-object
tracking. International Journal of Computer Vision, 2020.

Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei Jiang. Bag of tricks and
a strong baseline for deep person re-identification. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pages 0-0, 2019.

Ligian Ma, Siyu Tang, Michael J Black, and Luc Van Gool. Customized multi-person
tracker. In Asian conference on computer vision, pages 612—-628. Springer, 2018.

Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixe, and Christoph Feichten-
hofer. Trackformer: Multi-object tracking with transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8844—
8854, 2022.

A. Milan, L. Leal-Taixé, 1. Reid, S. Roth, and K. Schindler. MOT16: A benchmark for
multi-object tracking. arXiv:1603.00831 [cs], March 2016. URL http://arxiv.
org/abs/1603.00831. arXiv: 1603.00831.

Jiangmiao Pang, Linlu Qiu, Xia Li, Haofeng Chen, Qi Li, Trevor Darrell, and Fisher
Yu. Quasi-dense similarity learning for multiple object tracking. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 164—173,
2021.


http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831

GIRBAU, MARQUES, SATOH: MOT FROM APPEARANCE 13

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

(37]

(38]

Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 7263-7271,
2017.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, pages 91-99, 2015.

Ergys Ristani and Carlo Tomasi. Features for multi-target multi-camera tracking and re-
identification. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 6036—6046, 2018.

Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi. Per-
formance measures and a data set for multi-target, multi-camera tracking. In European
Conference on Computer Vision, pages 17-35. Springer, 2016.

Peter HA Sneath and Robert R Sokal. Unweighted pair group method with arithmetic
mean. Numerical Taxonomy, pages 230-234, 1973.

Daniel Stadler and Jiirgen Beyerer. Multi-pedestrian tracking with clusters. In 2021
17th IEEE International Conference on Advanced Video and Signal Based Surveillance
(AVSS), pages 1-10. IEEE, 2021.

Daniel Stadler and Jiirgen Beyerer. On the performance of crowd-specific detectors in
multi-pedestrian tracking. In 2021 17th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), pages 1-12. IEEE, 2021.

Daniel Stadler and Jiirgen Beyerer. Modelling ambiguous assignments for multi-person
tracking in crowds. In Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 133-142, 2022.

Peize Sun, Jinkun Cao, Yi Jiang, Rufeng Zhang, Enze Xie, Zehuan Yuan, Changhu
Wang, and Ping Luo. Transtrack: Multiple object tracking with transformer. arXiv
preprint arXiv:2012.15460, 2020.

Peize Sun, Jinkun Cao, Yi Jiang, Zehuan Yuan, Song Bai, Kris Kitani, and Ping Luo.
Dancetrack: Multi-object tracking in uniform appearance and diverse motion. arXiv
preprint arXiv:2111.14690, 2021.

Pavel Tokmakov, Jie Li, Wolfram Burgard, and Adrien Gaidon. Learning to track
with object permanence. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10860—10869, 2021.

Ibrahim Saygin Topkaya, Hakan Erdogan, and Fatih Porikli. Tracklet clustering for
robust multiple object tracking using distance dependent chinese restaurant processes.
Signal, Image and Video Processing, 10(5):795-802, 2016.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, lhan
Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert



14

GIRBAU, MARQUES, SATOH: MOT FROM APPEARANCE

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, An-
tonio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Meth-
ods, 17:261-272, 2020. doi: 10.1038/s41592-019-0686-2.

Gaoang Wang, Yizhou Wang, Haotian Zhang, Renshu Gu, and Jenq-Neng Hwang.
Exploit the connectivity: Multi-object tracking with trackletnet. In Proceedings of the
27th ACM International Conference on Multimedia, pages 482-490, 2019.

Guanshuo Wang, Yufeng Yuan, Xiong Chen, Jiwei Li, and Xi Zhou. Learning discrim-
inative features with multiple granularities for person re-identification. In Proceedings
of the 26th ACM international conference on Multimedia, pages 274-282, 2018.

Qiang Wang, Yun Zheng, Pan Pan, and Yinghui Xu. Multiple object tracking with
correlation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 38763886, 2021.

Shuai Wang, Hao Sheng, Yang Zhang, Yubin Wu, and Zhang Xiong. A general recur-
rent tracking framework without real data. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 13219-13228, 2021.

Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime track-
ing with a deep association metric. In 2017 IEEE international conference on image
processing (ICIP), pages 3645-3649. IEEE, 2017.

Jialian Wu, Jiale Cao, Liangchen Song, Yu Wang, Ming Yang, and Junsong Yuan. Track
to detect and segment: An online multi-object tracker. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 12352-12361, 2021.

Yu Wu, Yutian Lin, Xuanyi Dong, Yan Yan, Wanli Ouyang, and Yi Yang. Exploit the
unknown gradually: One-shot video-based person re-identification by stepwise learn-
ing. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 5177-5186, 2018.

Fan Yang, Xin Chang, Sakriani Sakti, Yang Wu, and Satoshi Nakamura. Remot: A
model-agnostic refinement for multiple object tracking. Image and Vision Computing,
106:104091, 2021.

En Yu, Zhuoling Li, Shoudong Han, and Hongwei Wang. Relationtrack: Relation-
aware multiple object tracking with decoupled representation.  arXiv preprint
arXiv:2105.04322, 2021.

Fangao Zeng, Bin Dong, Tiancai Wang, Xiangyu Zhang, and Yichen Wei. Motr: End-
to-end multiple-object tracking with transformer. arXiv preprint arXiv:2105.03247,
2021.

Yang Zhang, Hao Sheng, Yubin Wu, Shuai Wang, Weifeng Lyu, Wei Ke, and Zhang
Xiong. Long-term tracking with deep tracklet association. IEEE Transactions on Image
Processing, 29:6694-6706, 2020.

Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. Fairmot:
On the fairness of detection and re-identification in multiple object tracking. Interna-
tional Journal of Computer Vision, 129(11):3069-3087, 2021.



GIRBAU, MARQUES, SATOH: MOT FROM APPEARANCE 15

[51] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping
Luo, Wenyu Liu, and Xinggang Wang. Bytetrack: Multi-object tracking by associating
every detection box. Proceedings of the European Conference on Computer Vision
(ECCV), 2022.

[52] Zhimeng Zhang, Jianan Wu, Xuan Zhang, and Chi Zhang. Multi-target, multi-camera
tracking by hierarchical clustering: Recent progress on dukemtmc project. arXiv
preprint arXiv:1712.09531, 2017.

[53] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scal-
able person re-identification: A benchmark. In Proceedings of the IEEE international
conference on computer vision, pages 1116-1124, 2015.

[54] Xingyi Zhou, Vladlen Koltun, and Philipp Krihenbiihl. Tracking objects as points.
arXiv preprint arXiv:2004.01177, 2020.



