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Abstract
Since introducing vision transformers (ViTs), ViT-based models have outperformed

convolutional neural networks (CNNs) on various vision tasks. However, competitive
ViTs are parameter-heavy and computationally expensive, restricting their applicability
to tasks performed on resource-limited devices. In this paper, we propose a lightweight
hybrid architecture leveraging the advantage of CNNs and ViTs, called LcT. It achieves
the speed-accuracy trade-off with a small number of parameters and computational costs.
The proposed LcT is based on two primary operations: 1) It divides the feature map into
non-overlapping windows and utilizes the self-attention mechanism to capture cross-
window information; 2) It captures local information within each window using a stack of
local convolutional layers. The two procedures mentioned above cooperate to complete
global information interaction. Our experimental results indicate that LcT is effective
and efficient at classification and downstream vision tasks.

1 Introduction
CNNs[15, 19, 21] have reign supreme in computer vision since the 2010s, which can be
attributed to their ability to extract image information effectively. For example, CNNs have
an inherent spatial inductive bias that matches the natural characteristics of real-world visual
tasks. The transformer model[34], which has performed well in Natural Language Process-
ing (NLP), has recently been applied to vision tasks. Without the limitation of the local
receptive field in CNNs, ViT-based models learn visual representations on the whole fea-
ture map, which brings it the advantage of long-range dependency. Unfortunately, to obtain
the same performance as CNNs, ViT-based models have to be scaled up in size, making
them parameter-heavy. At the same time, the quadratic relationship with image size makes
it unsuitable for downstream tasks, such as object detection and semantic segmentation.

Some ViT variants have been proposed to reduce the complexity, for example, con-
straining the attention region (e.g., Swin[24], Shuffle transformer[20], D-DW-Conv[13],
CSWin[8] and Focal[41]), reducing transformer dimension (e.g., ResT[46], Twins[4] and
CMT[12]), and reducing the number of queries, keys, or values (e.g., CvT[38], PVT[35] and
PVTv2[36]). However, they are still far from being deployed to resource-limited devices.
In addition, compared to CNNs, more complex training strategies (e.g., AdamW[25] opti-
mizer and stochastic depth[18]), large-scale datasets (e.g., ImageNet 22k and JFT-300M),
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and strong data augmentation techniques (e.g., Rand Augment[6], multi-scale training[26],
Mixup[45] and Cutmix[44]) are also the basis for optimizing ViT-based models. Heavy data
augmentation may harm the model’s generalization capacity when transferring models pre-
trained on large datasets to other downstream datasets[47].

In some real-world visual tasks that require low latency but run on devices with lim-
ited computational capability, CNNs still dominate their backyard. It is crucial to create a
lightweight and general-purpose model for these applications.

In this paper, We present LcT, a hybrid structure better suited to complicated vision
applications. It takes advantage of ViT’s ability to model cross-window information and
CNN’s ability to learn local features. Specifically, a feature map is evenly partitioned into
non-overlapping windows. The unfolding operation packs patches at the corresponding lo-
cation in each window into M2 groups, as shown in Figure 1(c). The patches in each group
are computed by self-attention to model cross-window information. The folding operation
will restore patches to the full feature map based on their original positions. A local 3×3
standard convolutional layer and inverted residual blocks (IRB)[29] are used to model the
local information within each window.

The proposed LcT demonstrates competitive performance on various vision tasks, such
as image classification, object detection, and semantic segmentation. For instance, it achieves
a top-1 accuracy of 79.4% on ImageNet-1K classification at 6.5 million parameters, surpass-
ing MobileViT[26] and CoaT-Lite[40] by a clear margin. We note that the superiority of
LcT is not limited to theoretical metrics such as parameters or FLOPs. The LcT continues
to outperform state-of-the-art models in terms of throughput on GPU. The benefit of LcT’s
general-purpose architecture is further highlighted when transferring from image classifica-
tion to dense tasks. It gains 3.7 AP when MobileViT is replaced with LcT as the backbone
in SSDLite[23]. On PASCAL VOC 2012 dataset, LcT surpasses MobileViT by 1.9 mIoU
when substituting the backbone in DeepLabV3[2].

2 Related Work

2.1 Combination of CNN and ViT
Vanilla ViT[9] directly cuts an original image into non-overlapping patches and applies the
multi-headed self-attention (MSA) mechanism to model information between each patch.

In contrast to the original ViT, which only uses linear layers, the hybrid architecture
integrates CNNs in different locations or replaces crucial components to achieve better per-
formance and robustness. CeiT[42] uses a convolutional layer and a max-pooling layer as a
substitute for patchify stem to capture low-level information in original images and insert a
depth-wise separable convolution[3] into the feed-forward network (FFN) to model local in-
formation. ViTC[39] replaces the straightforward tokenization with a convolutional stem and
makes optimizing it easier. CvT[38] introduces convolutional projection to replace position-
wise linear projection for the attention operation. CoaT[40] applies a convolutional position
encoding as an alternative to absolute position embedding in ViT[9] and DeiT[33].

2.2 Effort to lower latency
As illustrated in Figure 1(a), all patches from the same feature map will participate in the
G-MSA in ViT[9]. The overall computational complexity of the G-MSA module is:
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(a) (b) (c)
Figure 1: An illustration of three self-attention modes. Patch: outlined in dotted lines;
Window: outlined in solid lines. (a) Global MSA (G-MSA): all patches of a feature map
perform the self-attention operation, which is used in ViT[9]. (b) Local-Window MSA (W-
MSA): the self-attention is constrained to each window, which is proposed by Swin[24]. (c)
Cross-Window MSA (CW-MSA): the patches (with the same color) from different windows
with the same corresponding position in the window perform the self-attention operation,
which is proposed by MobileViT[26], and we will adopt this method.

O(G-MSA) = 4hwC2 +2(hw)2C (1)

Here, the feature map contains h × w patches, and C is the attention dimension. Its
computational complexity is quadratic to feature size, which makes it unsuitable for pro-
cessing high-resolution images or hierarchical representations. To overcome this problem,
Swin[24] introduces the local-window self-attention mechanism to restrict the attention re-
gion, as shown in Figure 1(b). The overall computational complexity of a W-MSA module
is:

O(W-MSA) = 4hwC2 +2M2hwC (2)

Here, M×M is the window size. The self-attention is constrained to each nonoverlapping
window to reduce computational complexity. When the window size is fixed, the complexity
becomes linear to the image size. However, a great number of transformer blocks are essen-
tial to exchange information between adjacent windows and shifted strategy used to build
window connections is inconvenient to realize. Similarly, CSWin[8] computes self-attention
in the cross-shaped region.

Although these efforts have boosted efficiency, they are still far from being implemented
for tasks with limited resources. MobileViT[26] applies CW-MSA to exchange cross-window
information and convolutions to model local-window information, as shown in Figure 1(c).
The overall computational complexity of the CW-MSA module is:

O(CW-MSA) = 4hwC2 +2(hw/M2)hwC (3)

Despite its outstanding classification results, MobileViT’s thin and shallow design pro-
vides a potential for improvement on downstream tasks. There are at least three problems
with it; 1) The shallow and narrow architecture. To achieve adequate multi-scale features
for detectors like SSDLite[23], three-stage MobileViT needs to construct more extra layers.
On the other hand, these extra layers have poorer modeling power than the main stages; 2)
The small size of the window. Small kernel convolution cannot sufficiently aggregate local
information and results in performance deterioration if the kernel is smaller than the window
size. According to the results in MobileViT, substituting the ideal window size of [2, 2, 2]
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Figure 2: The overall hierarchical architecture of LcT and its sub-block. The unfold op-
eration extracts patches from different windows at the corresponding locations. Then, self-
attention operations are performed individually for each group of patches. The fold operation
restores all patches to the complete feature map according to their original positions.

with [4, 4, 4] or [8, 4, 2] would induce a slight decline in ImageNet-1K accuracy (78.4% to
77.6% and 77.3% respectively). This indicates that the window size cannot exceed 3× 3.
However, computing complexity is inversely proportional to the window size, as shown in
Formula 3. 3) The high rate of downsampling before the main stages. MobileViT uses an
eight-fold downsampling rate to solve the above problem to reduce the input image’s reso-
lution. This operation results in the loss of precise information about small objects during
detection and segmentation.

Naturally, it remains an open question: Is it possible to design efficient and effective
networks capable of both classification and downstream tasks?

Combining the strengths of CW-MSA and CNNs is a sensible way to design modern net-
work architecture. Our work will show that hybrid LcT can thoroughly utilize the potency of
the convolutional layer to allow us a large window size while restricting the burden rendered
by large kernels.

3 Method

3.1 Overall Architecture
The overall architecture of LcT presents in Figure 2. For the H ×W × 3 input image, LcT
obtains H

4 × W
4 feature maps through the stem structure, which includes four 3×3 successive

convolutional layers. In four main stages, each LcT block consists of a local 3×3 standard
convolutional layer to learn local information, as MobileViT[26] does. We utilize locally-
enhanced inverted residual blocks (Locally-Enhanced IRB)[29] instead of MLPs to learn
local representations further and gradually enlarge the convolution receptive field from 3×3
to a larger size in the CW-MSA transformer block. A depth-wise (DW) and point-wise (PW)
convolution block are used to fuse the concatenated features after these transformer blocks.
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With an exception to the last stage, a down-sampling IRB is applied to reduce the resolution
of the features and increase the channel dimension after the LcT block. Four stages will
produce multi-scale feature maps with resolutions of H

4 × W
4 , H

8 × W
8 , H

16 ×
W
16 and H

32 ×
W
32

respectively, hence our model can be easily served as a backbone for task-specific models.
We note that LayerNorm (LN) is replaced by BatchNorm (BN) with an exception to the

local 3× 3 standard convolutional layer before the CW-MSA transformer blocks, which is
quite different from most transformer designs.

3.2 Cross-Window Transformer
Cross-Window Multi-Headed Self-Attention (CW-MSA) The G-MSA used in vanilla
ViT[9], W-MSA employed in Swin[24], and CW-MSA adopted in MobileViT[26] all suffer
from their dilemmas. To alleviate these problems, we will use locally-enhanced CW-MSA
with a large window size to improve efficiency while suppressing performance degradation.

Considering the embedded feature Xe ∈ R(h×w)×C, here N = h × w is the number of
patches. In the CW-MSA transformer, the feature is evenly partitioned into nonoverlapping
windows by unfold operation so that N patches are divided into M2 groups. Here, M is the
window size. Each group contains L = hw/M2 patches coming from the corresponding lo-
cation in each window, as illustrated in Figure 1(c). Then the MSA will perform within each
group and linearly projects it to several heads with dimension d, respectively. The process
is:

X unfold−−−→ [X1,X2, ...,XM2
],whereXk ∈ R(hw/M2)×C

Y k = MSA(Xk),wherek = [1,2, ...,M2]

[Y 1,Y 2, ...,Y M2
]

fold−−→ Y

(4)

Where h×w is the feature height and width for patch level, M×M is the window size, and
C is the channel dimension.

Considering the large resolution of the feature map in the early layers, we use a cor-
respondingly large window in the first stage and gradually reduce the window size in the
following stages. This design is quite different from the previous work. In four stages, the
window size is set to [7, 4, 2, 1], [8, 4, 2, 1], and [8, 4, 2, 2] for classification object detec-
tion and semantic segmentation task, respectively. We note that the window size does not
change the structure of the model so that we can use the pre-trained backbone to finetune the
downstream model, even if we use different window-size values in different tasks.

Locally-Enhanced IRB Since we use a 7×7 or 8×8 window in the first stage and the
local convolution is only 3× 3, we must find a mechanism to enhance local representation.
Instead of using linear layers to aggregate MSA’s output, we replace MLP with an inverted
residual block, as illustrated in Figure 2. Rather than using a 5×5 or 7×7 kernel size, which
is expensive in terms of computation or parameter, previous work[31] has proved that two
3×3 convolutional layers can replace a 5×5 convolutional layer to obtain the same receptive
field. Specifically, the first stage of all variants contains two CW-MSA transformer blocks
and indirectly stacks three 3×3 convolutions (e.g., two locally-enhanced IRBs and one local
standard convolutional layer). Since we have stacked three 3×3 convolutional layers, a 7×7
local receptive field has been created to cover the first stage’s 7× 7 window. Similarly, the
same operations are applied to other stages. Although it is still slightly smaller than the 8×8
window on downstream tasks, the slight performance degradation is acceptable.
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Model #Channels #Blocks #Heads #Param. Flops

LcT-Tiny
Stem: [16,24,36,36]

Stages: [36,72,108,144] [2,2,4,2] [3,6,9,12] 1.89M 0.63G

LcT-Small
Stem: [16,32,48,48]

Stages: [48,96,144,192] [2,2,4,2] [2,4,6,8] 3.22M 1.09G

LcT-Base
Stem: [16,32,64,96]

Stages: [96,144,192,240] [2,2,6,2] [4,8,6,10] 6.53M 2.65G

Table 1: Details of the LcT variants. #Blocks: number of CW-MSA transformer blocks in
each stage.

Task Classification Object detection
Semantic segmentation
(pretraining/finetuning)

Dataset ImageNet-1K MS-COCO MS-COCO/VOC 2012 AUG
Epoch or iteration 300 epochs 60 epochs 50 epochs/40k iterations
Batch size 700 32 16/16
Base LR 0.000684 0.0002 6e-5/1e-5
Optimizer AdamW AdamW AdamW/AdamW
Weight decay 0.05 0.03 0.02/0.01

Data augmentation
Random crop,

resize,
horizontal flipping

MinIoURandomCrop,
resize, random flipping,
photometric distortion

Random crop,
resize, random flipping,
photometric distortion

Scheduler Cosine Step Cosine/Cosine
Decay epoch None [35, 45, 52, 57] None/None
Warm-up scheduler Linear Linear Linear/Linear
Warm-up iteration 20 epochs 600 iterations 1500 iterations/1500 iterations
Stochastic depth 0.1 0.1 0.1/0.1

Table 2: Training settings for image classification, object detection, and semantic segmenta-
tion .

The above work perfectly solves the issue: a small convolution kernel can well aggregate
local features, and a low down-sampling rate can retain richer spatial information on dense
prediction tasks.

Comparisons to existing designs Some previous works[12, 42] have employed the IRB
to replace the original MLP in the feed-forward neural network. However, their goals are
fundamentally different from those of our proposed LcT. Our model uses CW-MSA to ex-
change cross-window information, so the purpose of the IRB is clearer and more specific
(i.e., aggregating information within a window and expanding the receptive field).

3.3 Architecture Details and Variants

For a fair comparison with other models, we constructed three variants, named LcT-Base,
LcT-Small, and LcT-Tiny, as shown in Table 1. The expansion ratio is 2 in the locally-
enhanced IRB for all variants. The expansion ratio is set to 4, 3, and 2 for LcT-Base, LcT-
Small, and LcT-Tiny in the down-sampling IRB. The classifier contains a 1×1 convolution
that raises the dimensionality (The ratio is 4, 3, and 3 for LcT-Base, LcT-Small, and LcT-
Tiny, respectively), a global average pooling layer, and a fully connected layer that maps the
output to the category vector.
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Model Input #param. FLOPs #Aug.
Throughput
(images/s) Top-1

MobileViT-XXS[26] 2562 1.3M 0.4G Basic 1615 69.0
PVTv2-B0[36] 2242 3.4M 0.6G Strong 1388 70.5
T2T-ViT-7[43] 2242 4.3M 1.1G Strong 1445 71.7
LcT-Tiny(ours) 2242 1.9M 0.6G Basic 1549 73.1
MobileViT-XS[26] 2562 2.3M 1.1G Basic 904 74.8
ConViT-Tiny[10] 2242 6.0M 1.0G Strong 1161 73.1
ConViT-Tiny+[10] 2242 10.0M 2.0G Strong 960 76.7
T2T-ViT-10[43] 2242 5.9M 1.5G Strong 1192 75.2
T2T-ViT-12[43] 2242 6.9M 1.8G Strong 1072 76.5
LcT-Small(ours) 2242 3.2M 1.1G Basic 1250 76.7
MobileViT-S[26] 2562 5.6M 2.0G Basic 715 78.4
PVTv2-B1[36] 2242 13.1M 2.1G Strong 784 78.7
CoaT-Lite Tiny[40] 2242 5.7M 1.6G Strong 680 77.5
CoaT-Lite Mini[40] 2242 11.0M 2.0G Strong 641 79.1
LcT-Base(ours) 2242 6.5M 2.7G Basic 672 79.4

Table 3: Comparison with ViTs on ImageNet-1K validation set. Throughput is measured on
an RTX8000 GPU. The results indicate that LcT is less dependent on data augmentation and
may obtain better transfer ability according to previous work[47].
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Figure 3: Comparison of the number of parameters and throughput on ImageNet-1K classi-
fication. More details are in Table 3.

4 Experiments
We benchmark our proposed LcT on image classification, object detection, and semantic
segmentation. First, we evaluate LcT’s performance on the classification task and compare
it with the current state-of-the-art models. We also report GPU throughput (images/second)
to show real-world efficiency. Then, our experimental results demonstrate that LcT can be
conveniently integrated into various lightweight frameworks and outperform other models
on downstream tasks.

4.1 Image Classification on ImageNet-1K

Implementation details: For image classification, we evaluate our model on the ImageNet-
1K[7] benchmark, which contains 1.28M images for training and 50K images for validation
from 1000 classes. For training, We mostly follow [24] to train LcTs on 224×224 resolution,
and more details are in Table 2. We evaluate the models on the ImageNet-1K validation set
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with single crop top-1 accuracy. Models with Exponential Moving Average[27] (decay rate
= 0.9999) are used to test.

Comparison with state-of-the-art methods: Table 3 shows the results of LcT and var-
ious ViTs and is divided into three parts based on throughput. Results are based on image
resolution of 224×224, except for MobileViTs with an input of 256×256 according to their
own implementation. All of them are trained without distillation methods and extra data.
Here, basic data augmentation denotes random resized cropping and horizontal flipping,
while strong data augmentation denotes Mixup[45], CutMixup[44], RandAugment[6], and
basic data augmentation. Obviously, LcTs are better and more robust than other variants.
LcT-Base achieves better top-1 accuracy than MobileViT[26]/ PVTv2-B1[36]/ CoaT-Lite
Mini[40] (top-1 accuracy: 79.4% vs. 78.4%/ 78.7%/ 79.1%, parameters: 6.5M vs. 5.6M/
13.1M/ 11.0M). The accuracy-parameter curves in Figure 3(a) demonstrate the superiority
of LcT.

Inference speed on GPU: Throughput (images/second on a single GPU) is measured
on an RTX8000 GPU with a batch size of 128 following [33] and [24]. For other models,
we use their original implementations, except for MobileViT and ConViT from timm[37]
because they do not provide a convenient interface. In some cases, FLOPs and the number
of parameters as an indirect metric do not accurately reflect a model’s actual speed. For
example, in Table 3, LcT-Base has more FLOPs than both MobileViT-S and CoaT-Lite Mini,
but they still achieve a similar throughput. This is because we use fewer LayerNorms. For
example, we only use one LayerNorm in each stage. In contrast to LayerNorm, BatchNorm
can be combined with convolution for acceleration, resulting in lower latency. Based on
the results of our ablation experiments, our trade-off between LayerNorm and BatchNorm
significantly improves the throughput while maintaining performance. Figure 3(b) plots the
speed-accuracy curve, and our model consistently outperforms the state-of-the-art models.

4.2 Object Detection on COCO

Implementation details: We evaluate LcTs on MS-COCO 2017 dataset[22], which contains
118K training, 5K validation, and 20K test-dev images. Specifically, we applied LcTs as the
backbone in SSDLite[29] detector. We point out that this task sets the window size to [8,
4, 2, 1] for each stage, respectively. During training and evaluation, the image resolution is
set to 320×320. Our experiments are conducted in mmdetection[1], and more details are in
Table 2.

Results: Table 4 shows the results of metric of mAP@0.5:0.05:0.95 measured on the
COCO validation 2017 (mini-val) and test-dev 2017 (test-dev). Depending on our effective
structural design discussed in Section 3, we make significant improvements in both com-
paring CNN backbones and ViT backbone. Specifically, SSDLite-LcT-Base gains +5.9 and
+6.2 mAP over SSD300-VGG[30] and SSD300-ResNet-50[15] but has fewer FLOPs and
fewer parameters. In addition, with a few more parameters, LcT-Base and LcT-Small sur-
pass the previous light-weight MobileViT-S[26] and MobileViT-XS by +3.7 and +2.1 mAP
as backbones in SSDLite.

The results have shown that the number of main stages and appropriate stride are the key
factors affecting the performances on dense prediction tasks. As a result, the structure design
of LcTs is more suitable as a general-purpose backbone.
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Method Backbone Input Param. FLOPs test-dev mini-val
MobileNetV1[17] 3202 5.1M 1.3G 22.2 -
MobileNetV2[29] 3202 4.3M 0.8G 22.1 †21.3
MobileNetV3[16] 3202 4.9M 0.6G 22.0 -

SSDLite MnasNet-A1[32] 3202 4.9M 0.8G 23.0 -
MobileViT-XS[26] 3202 2.7M - - 24.8
LcT-Small(ours) 3202 3.5M 2.7G - 26.9
MobileViT-S[26] 3202 5.7M - - 27.7
LcT-Base(ours) 3202 6.7M 6.1G - 31.4
ResNet-50[15] 3002 22.9M - - ‡25.2

SSD VGG[30] 3002 34.3M 34.4G - †25.5
VGG[30] 5122 36.0M 98.8G - †29.5

Table 4: Detection results on COCO dataset. † means this result is form mmdetecton[1] and
‡ means this result is form [26].

Backbone Input Param. FLOPs mIOU
MobileViT-XS[26] 5122 2.9M - 77.1
MobileNetV1[17] 5122 11.2M 14.2G 75.3
MobileNetV2[29] 5122 4.5M 5.8G 75.7
MobileViT-S[26] 5122 6.4M - 79.1
LcT-Small(ours) 5122 3.8M 9.1G 79.4
ResNet101[15] 5122 58.2M 81.0G 80.5
LcT-Base(ours) 5122 7.4M 19.5G 81.0

Table 5: Semantic segmentation results w/ DeepLabV3 on VOC2012 validation set.

4.3 Semantic Segmentation on VOC
Implementation details: We experiment on the VOC 2012 dataset[11] covering 21 semantic
categories. We adopt DeepLabV3[2] based on the implementation from mmsegmentation[5]
as our base framework. Following [2], extra annotations[14] and dataset[22] are used. First,
following the official PyTorch repository[28], We select objects from the COCO 2017 dataset
with the same category as the VOC 2012 dataset and pre-train DeepLabV3-LcTs. Then we
fine-tune models on the VOC 2012 AUG dataset[14] and evaluate them on the VOC 2012
validation set. The input image is scaled to 512×512 on training and evaluation. More
Details are in Table 2. In evaluating, the metric of mIOU is measured on a single scale.

Result: As shown in Table 5, Our LcT consistently outperforms other models when
used as the backbones on DeepLabV3. Specifically, LcT-Base/LcT-Small brings 2.3/1.9
mIOU improvements over MobileViT-S[26]/MobileViT-XS[26], respectively. Compared to
the heavy-weight backbone, we obtain a slight improvement (+0.5 mIOU) but save a lot of
parameters and computational consumption (LcT-Base vs. ResNet101[15]: 7.4M vs. 58.2M:
19.5G vs. 81.0G).

4.4 Ablation Experiments
In this section, we conduct ablation experiments to explore the impact of critical components.
Considering the resource constraints, we train LcT-Small for 50 epochs and then evaluate its
performance on ImageNet-1k. We reduce the learning rate and warm-up epoch to 0.000273
and 10, respectively, and keep other hyper-parameters.

Window Sizes. In Table 6, part 1 shows the comparison results for different window
sizes. When using smaller windows ([7, 7, 7, 1] → [7, 4, 2, 1] for four stages, respectively),
there was a significant gain (+0.8%) in accuracy, which means that stacking convolution
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Method #Param. FLOPs
Throughput
(images/s) Top-1

Windows size
[7, 7, 7, 1] 3.2M 1.07G 1263 63.74
[7, 4, 2, 1] 3.2M 1.09G 1250 64.54(+0.8)
[4, 2, 2, 1] 3.2M 1.21G 1046 64.56(+0.82)

FFN type MLP 3.2M 1.08G 1415 64.09
IRB 3.2M 1.09G 1250 64.54(+0.45)

Normalization
All BN 3.2M 1.09G 1297 63.84
All LN 3.2M 1.09G 1077 64.46(+0.62)
LN+BN 3.2M 1.09G 1250 64.54(+0.7)

Table 6: Ablation experiments exploring the role of window size, ffn type, and normalization.

increases the receptive field is an indirect and compromised approach. However, when we
reduce the window size to [4, 2, 2, 1], the performance does not improve further, which
means that the locally-enhanced module enables us to adopt a larger window and thus in-
crease the speed ([7, 4, 2, 1] vs. [4, 2, 2, 1]: 1250 vs. 1046 image/s).

FFN type. In Table 6, part 2 compares the locally-enhanced IRB and the MLP in the
feedforward neural network. We observe a +0.45% boost using locally-enhanced IRB in-
stead of MLP, demonstrating that the local enhancement module plays an important role.

Normalization. The LN is placed before MSA and FFN in the original ViT and most
of its variants to stabilize the tokens distribution by normalizing the channel dimension.
BN is the standard normalization method for convolution to stabilize the distribution by
normalizing the batch dimension. As shown in Table 6, replacing all LNs with BNs leads
to a significant accuracy degradation, whereas replacing all BNs with LNs results in a speed
loss. Considering the balance of accuracy and speed, we insert LN into the local 3 × 3
convolution and utilize BN before MSA and locally-enhanced IRB. The results show that
this strategy achieves a balance of accuracy and speed.

Other ways to improve the receptive field. Atrous convolution is another method that
does not lose image information while increasing the perceptual field. However, we observe
severe performance degradation when using atrous convolution in FFN. For example, using
atrous convolution with rate=3 in IRB results in a 0.88% drop compared to the baseline
(64.54% → 63.76%).

5 Conclusion
In this work, we propose a lightweight, general-purpose vision architecture that overcomes
the shortcomings of some previous work by fusing the cross-window self-attention mech-
anism and CNN. Our extensive experiments show that LcT not only outperforms exist-
ing state-of-the-art models for classification tasks but also dramatically improves the per-
formance of downstream tasks such as object detection and semantic segmentation. As a
lightweight ViT, LcT has few parameters and computational effort, filling some gaps in the
ViT family for applications on resource-limited devices.
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