
W. GAO, A. WANG, G. METZER, R. YEH, R. HANOCKA: TETGAN 1

Supplemental for TetGAN: A Convolutional
Neural Network for Tetrahedral Mesh
Generation

William Gao1

wmg@uchicago.edu

April Wang1

aprilyanli38@gmail.com

Gal Metzer2

gal.metzer@gmail.com

Raymond A. Yeh3

rayyeh@purdue.edu

Rana Hanocka1

ranahanocka@uchicago.edu

1 University of Chicago
Chicago, IL, USA

2 Tel Aviv University
Tel Aviv-Yafo, Israel

3 Purdue University
West Lafayette, IN, USA

1 Architecture details
The network architecture of TetGAN combines a convolutional variational autoencoder and
two convolutional Wasserstein discriminators, which are denoted as fenc, fdec, f l

dis, and f g
dis.

The encoder fenc consists of N convolutional blocks of 4 convolution layers, divided by
N−1 pooling layers that downsample the irregular grid. After the final convolution, TetGAN
can be adapted to use a variety of modules to compute an encoding. In the variational setting,
we also use 2 additional linear layers, for the output layers of f µ

enc and f σ2
enc. All layers except

the final output layers are followed by instance normalization and a leaky ReLU nonlinearity.
The decoder fdec is nearly a reversal of the encoder. It consists of N convolutional blocks

of 4 convolution layers, divided by N−1 upsampling layers that increase the grid resolution.
Before the first convolution, we reverse the module that produces the final encoding. Again,
all layers except the final output convolutional layer are followed by instance normalization
and a leaky ReLU nonlinearity.

TetGAN is fairly robust to the choice in module used in computing the final encoding.
In this manuscript, we chose to use a large linear layer across the entire grid for the high-
resolution models (making one latent code per mesh) and a shared MLP per-tetrahedron for
the low-resolution models (making one latent code per tetrahedron). In our experiments,
using a Tetrahedral convolution to compute the final encoding also works well, although it
produces thinner meshes. We choose a latent code size of 512.

The local discriminator f l
dis is a PatchGAN [3] discriminator outputting a probability per

tetrahedron TTT (N)
i ∈ T (N). A final probability is computed by averaging over the tetrahedra.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Li and Wand} 2016



2 W. GAO, A. WANG, G. METZER, R. YEH, R. HANOCKA: TETGAN

Specifically, f l
dis has a fully convolutional architecture, where the final layer has 1 output

channel, representing the WGAN score per tetrahedron. Each convolutional layer except the
final is followed by instance normalization and a leaky ReLU nonlinearity.

The global discriminator f g
dis is a more standard convolutional discriminator outputting

a single probability for the entire grid T (N). Its architecture mirrors the encoder architecture,
consisting of N convolutional blocks of 3 convolution layers, divided by N−1 pooling layers.
After the final convolution, we apply a fully connected linear layer that outputs a scalar
WGAN score. As before, each layer, except the final linear layer, is followed by instance
normalization and a leaky ReLU nonlinearity.

2 Implementation details
Subdivision. Note that there is no canonical way to subdivide a tetrahedron. The diagonal
in the subdivision grid is selected based on the initial ordering of the vertices/edges in the
low resolution grid (and remains fixed/unchanged throughout).

Hyperparameters. We subdivide the base tetrahedral grid 3 times, i.e. choosing N = 4.
We trained TetGAN using the Adam optimizer [2] with learning rate of 0.0001 and β1,β2 =
0,0.9 as suggested by Gulrajani et al. [1]. We choose a batch size of 30. We choose 0.5 for
the weighted smoothing hyperparameter β (main text, equation 4) and 4 for the deformation
field filtering hyperparameter γ (main text, equation 5).

Runtime. Each shape file takes on average 1-2 seconds to preprocess, depending on
the size of the file. The total training time is approximately two days on two NVIDIA A40
GPUs for the larger categories (such as chairs). Smaller categories (such as benches) will
give reasonable results in one day, and may not benefit from training any longer.

3 Experiments

3.1 Dataset details
Dataset size. The size of the dataset in COSEG is only 300 vases. For the ShapeNet cate-
gories, there are 6778 chairs, 1813 benches, 3173 sofas, 3514 cars, and 8436 tables.

Non-manifold edges. Our method may contain non-manifold edges. We ran some statis-
tics on our data and found that 98.9% of edges in the ground-truth (chair) dataset are mani-
fold, and 98.5% of edges in the generated tetrahedral meshes are manifold.

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Gulrajani, Ahmed, Arjovsky, Dumoulin, and Courville} 2017



W. GAO, A. WANG, G. METZER, R. YEH, R. HANOCKA: TETGAN 3

3.2 Additional quantitative results
We present additional quantitative results evaluating TetGAN in unconditional generation
using ShapeNet benches, sofas, tables, and COSEG vases. We train high-resolution (approx.
613) models for benches and vases, and low-resolution (approx. 413) models for sofas and
tables, choosing resolution based on perceived necessity (i.e. our belief of how much resolu-
tion is necessary to fully capture details of the category). We compare against unsimplified
versions of the baselines.

Model Benches Sofas Tables Vases

OccNet 10.91 1.54 2.47 7.42
ShapeGAN (GAN) 7.46 1.57 0.48 5.46
ShapeGAN (VAE) 7.74 8.30 6.48 20.51
TetGAN 2.67 3.35 2.13 2.57
Table 1: FID↓ scores of TetGAN and base-
lines on various categories. TetGAN is best in
2 categories and competitive in the rest despite
generating volumes (at a smaller object reso-
lution) while baselines only generate surfaces.

FID Recall that we use we use deep
features from a PointNet++ [4] architecture
trained for classification to calculate FID
score. Tab. 1 shows the scores for TetGAN
and baselines across multiple categories.
We observe that TetGAN beats baselines
in both the Shapenet benches and COSEG
vases categories, models which are trained
at a high grid resolution. TetGAN is able to
remain competitive with the surface-based
baselines, while task of generating coarse
volumetric meshes i.e. tetrahedral meshes
with fewer surface faces.

Model Benches Sofas Tables Vases

OccNet 0.0014 0.0017 0.0053 0.0021
ShapeGAN (GAN) 0.0017 0.0013 0.0047 0.0022
ShapeGAN (VAE) 0.0003 0.0004 0.0032 0.0009
TetGAN 0.0014 0.0017 0.0045 0.0023
Table 2: Variety metric ↑ for TetGAN and
baselines on various categories.

Variety Recall we evaluate variety by
averaging the Chamfer distance between
the k closest pairs of generated meshes
within a sample of size N (choosing k = 25,
N = 250 in practice). Tab. 2 shows the vari-
ety metrics for TetGAN and baselines. We
observe that TetGAN again beats baselines
in 2 categories, sofas and vases and is rela-
tively competitive in the other two.

Model Benches Sofas Tables Vases

ShapeGAN (VAE) 0.0010 0.0018 0.0014 0.0048
OccNet 0.0095 0.0118 0.0222 0.0187
TetGAN 0.0046 0.0024 0.0029 0.0055
Table 3: Reconstruction accuracy ↓ for Tet-
GAN and baselines. TetGAN and Occ-
Net both have effective generative capabilities
while still enabling reconstruction/encoding.
TetGAN offers a significant improvement to
OccNet in all categories.

Reconstruction Recall we use Chamfer
distance to measure reconstruction quality.
Tab. 3 shows the average Chamfer distance
between reconstructed meshes and ground
truth meshes for TetGAN and baselines
over multiple categories. The VAE version
of ShapeGAN, which is a pure VAE, beats
the alternatives handily. However, TetGAN
offers a significant improvement over Occ-
Net in all categories.

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017



4 W. GAO, A. WANG, G. METZER, R. YEH, R. HANOCKA: TETGAN

3.3 Additional visual results

Figure 1: TetGAN generates meshes with solid interiors.

Figure 2: Additional chair interpolations.



W. GAO, A. WANG, G. METZER, R. YEH, R. HANOCKA: TETGAN 5

Figure 3: Additional vase interpolations.

Figure 4: Unconditionally sampled benches.



6 W. GAO, A. WANG, G. METZER, R. YEH, R. HANOCKA: TETGAN

Figure 5: Unconditionally sampled cars. We observe that although the model is able to learn
the coarse shape of a car, the discretization is not fine enough to capture details.

Figure 6: Simulation using TetGAN generated tetrahedral meshes. We apply a load to simu-
late a force acting on our generated table made out of pinewood and amplified the deforma-
tion by 2000× for visualization.



W. GAO, A. WANG, G. METZER, R. YEH, R. HANOCKA: TETGAN 7

Figure 7: TetGAN generates a series of smooth interpolations between two shapes with solid
interiors. Inset: corresponding cross-section. TetGAN produces solid interiors for novel
interpolated shapes.



8 W. GAO, A. WANG, G. METZER, R. YEH, R. HANOCKA: TETGAN

References
[1] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron

Courville. Improved training of Wasserstein GANs. In Advances in Neural Info. Proc.
Systems, 2017.

[2] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Intl. Conf. on Learning Representations, 2015.

[3] Chuan Li and Michael Wand. Precomputed real-time texture synthesis with Markovian
generative adversarial networks. In Proc. European Conf. on Computer Vision, 2016.

[4] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3D classification and segmentation. In Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2017.


