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Abstract

The adversarial vulnerability of deep neural networks (DNNs) has been actively in-
vestigated in the past several years. This paper investigates the scale-variant property
of cross-entropy loss, which is the most commonly used loss function in classification
tasks, and its impact on the effective margin and adversarial robustness of deep neural
networks. Since the loss function is not invariant to logit scaling, increasing the effective
weight norm will make the loss approach zero and its gradient vanish while the effective
margin is not adequately maximized. On typical DNNs, we demonstrate that, if not prop-
erly regularized, the standard training does not learn large effective margins and leads to
adversarial vulnerability. To maximize the effective margins and learn a robust DNN,
we propose to regularize the effective weight norm during training. Our empirical study
on feedforward DNNs demonstrates that the proposed effective margin regularization
(EMR) learns large effective margins and boosts the adversarial robustness in both stan-
dard and adversarial training. On large-scale models, we show that EMR outperforms
basic adversarial training, TRADES and two regularization baselines with substantial
improvement. Moreover, when combined with several strong adversarial defense meth-
ods (MART [48] and MAIL [26]), our EMR further boosts the robustness.

1 Introduction
One major challenge to the security of computer vision systems is that deep neural networks
(DNNs) often fail to achieve a satisfactory performance under adversarial attacks [45]. Since
the phenomenon is observed, various adversarial attacks [5, 9, 15] and defense methods
[23, 33, 53] have been proposed and the understanding into the adversarial vulnerability of
DNNs is improved [3, 20, 46]. Denote the DNN as fθθθ : xxx 7→ lll, with xxx ∈RD and lll ∈RK . The
model is optimized by algorithm A that minimizes empirical risk L over training set Dtr,

θθθ
∗ =A( fθθθ ,Dtr,L). (1)

There are generally four direct methods to improve the robustness of DNNs. First, the func-
tion space fθθθ can be designed to accommodate the need for adversarial robustness. For
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Figure 1: The problem of cross-entropy loss in maximizing effective margins and the pro-
posed ERM’s performance in terms of increasing the effective margins on MNIST test set.
(a) The gradient of the sigmoid function σ(·) vanishes if we scale up the input logit fθθθ (xxx)
by α > 1. However, its distance to the decision boundary (dashed red vertical line), i.e., the
effective margin m̃ defined in (3) remains the same. This property shows that only training
with cross-entropy loss does not effectively increase the actual margin. Our work aims to
push the decision boundary away from the sample so that the m̃ is increased, e.g., fθθθ (xxx)+β

with β > 0. (b) The means (solid lines) and standard deviations (background shadow) of
the effective margins of an MLP on the MNIST test set. The proposed EMR achieves an
m̃ and adversarial robustness that is comparable with adversarial training, and outperforms
standard training with weight decay or L-Softmax. See Table 1 for details. (c) and (d) Effec-
tive margin on CIFAR10 and MNIST when different λWD are used. Training without weight
decay (WD) or with small λWD leads to smaller effective margins.

example, replacing the piecewise linear activation with a smooth activation function im-
proves the performance of adversarial training [50], and some architectural configurations
are better than others in terms of adversarial robustness [19]. Second, the algorithm A can
be incorporated with inductive biases to learn a function with some specific properties, such
as low model complexity [22], local linearization [38] and feature alignment [25]. Third, the
training set Dtr can be shifted by adversarial perturbation [33, 53] or other data augmenta-
tion [16, 39] to enhance the robustness. Finally, a carefully designed loss L can be used to
improve the robustness, such as Max Mahalanobis center loss [36]. Besides the direct adver-
sarial defenses, indirect adversarial defenses are also investigated, e.g., adversarial examples
detection [30, 35, 42, 51] and obfuscated gradient defenses [2, 4, 12, 17, 32, 43, 44, 49].

This work falls into the second category (inductive bias) where the neural network is
trained with regularization to boost the adversarial robustness. We consider the most popular
loss function for the classification task, the cross-entropy (XE) loss,

XEi =−
K

∑
k=1

yik log
exp(lik)

∑ j exp(li j)
, (2)

where the logit lik = f (k)
θθθ

(xxxi) is the k-th output of the neural network for the i-th sample. One
property of the network is that the prediction for the i-th sample, i.e., ŷi = argmaxk∈[K] lik, is
invariant to scaling the logit vector llli = [lik]k by a positive constant α . In other words, the
classification accuracy will not change if we scale llli up to αllli where α > 1. However, the
XE loss will vanish if we scale up the logit.

This phenomenon brings a problem in optimization with XE loss, since the training only
aims to minimize the loss without maximizing the effective margin, which is defined as the
normalized logit difference (see Equation 3) and is invariant to the weight magnitudes. Once
a sample is correctly classified, the scale-variant property of XE loss can be exploited by
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SGD to minimize the loss while the distance to the decision boundary (in the input space)
remains small (see Fig. 1a). In a homogeneous NN [14, 29, 31], such as multi-layer per-
ceptron (MLP) and convolutional neural network (CNN) without residual connections or
normalization layers, the logit magnitude scales with weight norms so the training algorithm
can minimize the loss by increasing weight norms. In a ResNet [18], the final classification
layer can be scaled up to minimize the cross-entropy loss. Weight decay [22] is a common
strategy to increase the effective margin by controlling the squared l2 norm of weights in the
DNN. However, it is known that adversarial robustness cannot be achieved by only using
weight decay (WD), especially in deeper networks [45]. The most popular way to robustify
DNNs is adversarial training (AT) [33], which explicitly perturbs samples to be on the de-
sired margin from the original samples, and then trains on the perturbed samples. However,
AT incurs increased computational cost for training due to the generation of the adversarial
training samples in each iteration.

In this paper, we propose effective margin regularization (EMR) to push the decision
boundary away from the samples by controlling the effective weight norms of the samples.
We first show that traditional regularization such as weight decay and large-margin loss (e.g.,
[27]) cannot train a DNN with satisfactory robustness. Then the proposed method is com-
pared with WD, large-margin softmax and adversarial training, where we show its strength
at maximizing the effective margin and thus improving adversarial robustness. Finally, on
large-scale DNNs, we propose an approximation to EMR and demonstrate that when com-
bined with adversarial training, EMR achieves competitive results compared with basic ad-
versarial training and two recent regularization methods for improving adversarial training,
i.e., Input Gradient Regularization (IGR) [41] and Hypersphere Embedding (HE) [37]. Note
that our EMR is complementary to adversarial training (AT) – EMR pushes the decision
boundary away from the training samples so as to increase the effective margin, while AT
generates training samples on the desired margin. Thus EMR and AT can be combined to
further improve adversarial robustness.

2 Related Work
Adversarial Defense. The standard way to train an adversarially robust DNN is to use
adversarial training [33]. The clean examples are deliberately perturbed to approach the
desired margin distance, so that the effective margin is produced during training. Based on
adversarial training, regularization approaches are proposed to learn a DNN with desired
properties. [41] proposes to regularize the norm of the loss gradient with respect to input
(IGR). In contrast, our work proposes to regularize the gradient of logit with respect to input
to maximize the effective margin. Locally Linear Regularization (LLR) [38] is proposed
to learn a more linear loss function at each training sample, while our paper controls the
local logit function’s weight norm for training samples. Hypersphere embedding (HE) [37]
proposes to normalize the features and classification layer to alleviate the influence of weight
norms. In our empirical study, we demonstrate that EMR achieves better robustness than IGR
and HE on large-scale neural networks.
Margin Regularization. The hinge loss [7] is a classical loss to induce a large margin in
SVM [7]. On DNNs, several losses are proposed to induce large margins, such as Large-
Margin Softmax [27], A-Softmax [28] and AM-Softmax [47]. These large-margin losses
still have problems to learn large effective margins since the scale of features and weights af-
fects the loss values. On both MLP and CNN, we demonstrate that training with L-Softmax
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(a) Test Set of Standard Training (b) Training Set of Standard Training (c) Test Set of Adv Training (d) Training Set of Adv Training

(1
) E

ffe
ct

iv
e 

M
ar

gi
n 

on
 C

IF
A

R
10

(2
) E

ffe
ct

iv
e 

M
ar

gi
n 

on
 M

N
IS

T

Epoch Epoch Epoch Epoch

Figure 2: Effective margins on the training and test sets of CIFAR10 and MNIST. In normal
training, EMR has a significant advantage over L-Softmax and weight decay (WD). In ad-
versarial training, the improvement of EMR is still observable.

loss improves the effective margin compared with the standard cross-entropy loss, while
EMR learns a larger effective margin than L-Softmax since EMR considers the scale prob-
lem in the loss function. [6, 31] study the normalized margin of homogeneous DNNs trained
with gradient descent from a theoretical perspective and prove that the normalized margin
is maximized by the gradient descent. Our work empirically investigates the normalized
margin in DNNs trained with stochastic gradient descent and its influence on the adversarial
robustness. We show that by controlling the effective weight norm and increasing the effec-
tive margin, the adversarial robustness can be improved over vanilla training with SGD and
WD. The attack method DeepFool [34] moves an input sample to cross its decision boundary
by treating the model as a linear classifier at each optimization step, which is related to the
margin of a classifier. In contrast, our paper proposes to defend against adversarial attacks
by increase the effective margin during training. We did not evaluate the DeepFool since it is
not a standard attack method in adversarial defense literature [10] and our experiment shows
that DeepFool is not as effective as PGD at attacking large-scale models (see supplemental).
Max-Margin Adversarial training (MMA) [13] proposes to approximate the margin by push-
ing input samples to cross the classification boundary with PGD and recording the moved
distance. In contrast, EMR proposed to maximize the effective margin by regularizing the
effective weight matrix norm, and can boost the adversarial robustness of both standard train-
ing and adversarial training. Since the performance of MMA is worse than vanilla PGD and
TRADES according to AutoAttack benchmark [9], we do not include the comparison with
MMA in the experiment.

3 Regularizing Effective Weight Norm Improves Effective
Margin and Adversarial Robustness

We use the notation for a DNN in Section 1. A general DNN, such as MLP, CNN and
evaluation-mode Resnet with piece-wise linear activation functions (e.g., ReLU and LeakyReLU),
can be expressed as a linear function for each input sample, i.e., fθθθ (xxxi) = WWW (xxxi)xxxi + bbb(xxxi).
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The weight matrix WWW i ,WWW (xxxi) and bias bbbi , bbb(xxxi) are determined by input samples since the
activations will change with the input. Similar to the normalized margin in [31], we define
the effective margin m̃i as the normalized logit difference between the ground-truth class and
the closest other class,

m̃i = min
j 6=yi

f
(yi)
θθθ

(xxxi)− f ( j)
θθθ

(xxxi)

‖www(yi)
i −www( j)

i ‖2
, (3)

where yi is the ground-truth class for xxxi and www( j)
i is the jth row vector of WWW i. The quantity

is relevant to adversarial robustness, since it describes the actual distance of a sample to the
decision boundary in the input space. Thus, to improve adversarial robustness, it is desirable
to maximize the effective margin, so that adversarial examples will fall inside the margin but
still correctly classified. However, during training a DNN, once a training image is correctly
classified by the network, the scale of fθθθ (xxxi) can be increased to minimize the loss without
effectively maximizing the actual margin. We aim to alleviate this problem by regularizing
the effective weight norm during training.

For simplicity, we first consider a DNN without residual connections and assume that
the bias term is appended as an additional dimension of the weight and xxxi := [xxxi;1]; residual
DNNs are considered in the experiment section. The logit output of the network is deter-
mined by the angle φi j between xxxi and www( j)

i , and the lengths ‖xxxi‖ and ‖www( j)
i ‖,

li j = xxxT
i www( j)

i = ‖xxxi‖‖www( j)
i ‖cos(φi j). (4)

Training λWD Clean Acc. PGD20 m̃train m̃test
ST 0.1 77.88 34.06 1.00±0.69 1.02±0.70
ST 0.01 96.54 48.41 1.31±0.69 1.31±0.67
ST 0.001 98.41 24.41 1.11±0.51 1.12±0.53
ST 0.0001 98.33 4.69 0.79±0.34 0.79±0.36

ST+LSoftmax 0.1 17.83 17.27 3.13±1.11 3.21±1.16
ST+LSoftmax 0.01 98.00 60.59 1.91±0.86 1.91±0.85
ST+LSoftmax 0.001 98.63 51.07 1.82±0.63 1.81±0.66
ST+LSoftmax 0.0001 98.50 28.91 1.34±0.44 1.34±0.47
ST+EMR0.1 0.001 97.50 87.56 4.41±1.24 2.24±0.98

AT 0.01 97.66 90.11 1.18±0.69 2.27±1.07
AT 0.001 98.68 92.62 1.21±0.69 2.34±0.94
AT 0.0001 98.98 92.24 1.09±0.61 2.13±0.77

AT+LSoftmax 0.01 97.57 89.88 1.18±0.69 2.28±1.07
AT+LSoftmax 0.001 98.72 92.60 1.21±0.68 2.35±0.94
AT+LSoftmax 0.0001 99.02 92.50 1.10±0.63 2.12±0.78
AT+EMR3e−4 0.001 98.68 92.78 3.83±1.27 2.42±0.99

Table 1: Adversarial robustness and effective mar-
gins of MLP on MNIST for standard training (ST)
and adversarial training (AT). PGD20 attack has an
l∞ bound of ε = 0.1 and the step size α is 0.01.
The mean and standard deviation of effective mar-
gins defined in Equation 3 of training (m̃train) and
test (m̃test) sets are shown.

The range of input magnitudes
‖xxxi‖ is often fixed in the training/test
stages, e.g., normalizing pixel values
to [0.0,1.0]. Thus, in order to mini-
mize the loss, the training aims to in-
crease liy and decrease li j,∀ j 6= y, by
updating ‖www( j)

i ‖ and cos(φi j). As we
want to learn a large effective margin,
it is beneficial to constrain the weight
norm ‖www( j)

i ‖ during training and let
the optimization focus on the angular
distance. Weight decay is a common
method to control the weight norm of
individual layers, while other works
have proposed large margin losses
[27]. In contrast, here we propose ef-
fective margin regularization (EMR)
to directly penalize the effective weight norm for training samples, i.e.,

L=
1
B

B

∑
i

XE( fθθθ (xxxi),yi)+λEMR
1
B

B

∑
i

K

∑
j
‖www( j)

i ‖
2. (5)

Different from WD, which regularizes all parameters of a DNN, our EMR regularizes the
local weight norms of the training samples. In our implementation, to compute the effective
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weight matrix for each output dimension, we loop over the object categories and take the
gradient of the sum of the j-th logit over a batch, i.e., ∑i li j, with respect to the input batch,
and obtain www( j)

i ,∀i as a result of computational independence of samples. The λWD is the
coefficient for the WD regularization, where the squared L2 norm of all parameters is added
to the loss. In contrast, we regularize a weighted sum of L2 norm of the logit’s gradient
(effective weight norm) as in Equation 5.

Training λWD Clean Acc. PGD10 m̃train m̃test
ST 0.01 55.77 4.19 0.39±0.31 0.41±0.32
ST 0.001 82.10 0.68 0.28±0.19 0.30±0.21
ST 0.0001 83.00 0.50 0.22±0.15 0.23±0.17

ST+LSoftmax 0.01 55.06 4.90 0.41±0.33 0.43±0.34
ST+LSoftmax 0.001 82.39 0.81 0.27±0.18 0.28±0.19
ST+LSoftmax 0.0001 82.73 0.29 0.22±0.15 0.23±0.16
ST+EMR0.01 0.0005 69.78 16.37 0.66±0.48 0.70±0.50

AT 0.01 34.73 22.98 0.90±0.82 1.22±1.04
AT 0.001 60.27 32.47 0.76±0.65 1.09±0.84
AT 0.0001 63.59 32.58 0.71±0.60 1.03±0.78

AT+LSoftmax 0.01 34.62 22.87 0.91±0.82 1.21±1.02
AT+LSoftmax 0.001 60.47 32.29 0.76±0.65 1.08±0.84
AT+LSoftmax 0.0001 63.09 32.96 0.71±0.61 1.03±0.78

AT+EMR0.001 0.0005 62.79 33.41 0.74±0.64 1.08±0.83

Table 2: Adversarial robustness and effective mar-
gins of CNNs on CIFAR10. PGD10 attack has an l∞
bound of ε = 0.031 and the step size α is 0.0078.

Empirical Results for Standard
Training. We test the performance
of EMR on two common feedforward
neural networks, MLP and CNN. The
MLP consists of 4 hidden layers and
one output layer with the hidden di-
mensions as 1,024. The model is
trained using SGD+Momentum on
MNIST [24] for 50 epochs and with a
batch size of 100. The initial learning
rate is 0.01 and we divide it by 10.0 at
the 30th epoch. The CNN consists of
4 convolution layers and the detailed
architecture is in supplemental. The model is trained using SGD+Momentum on CIFAR10
[21] for 100 epochs and with a batch size of 100. The initial learning rate is 0.01 and we
divide it by 10.0 at 75th and 90th epochs. We compare standard WD, L-Softmax and EMR
on the CNN and MLP. On MLP, the margin parameter of L-Softmax loss is set as 4, while
on CNN, the margin parameter is 1, otherwise the training will fail to converge. To evaluate
the robustness, PGD attack [33] with l∞ norm bound is used. For CNN, we use PGD10 with
step size α = 0.0078 and norm bound ε = 0.031. For MLP, we use PGD20 with step size
α = 0.01 and norm bound ε = 0.1.

In Fig. 1c-1d, we first plot the effective margin of test samples during model training
when standard WD is used with different hyperparameters λWD. Note that we only plot
m̃i of correctly classified images since those images are the targets of adversarial attacks.
The effective margin when WD is not used is clearly smaller than imposing a large weight
decay, which validates our argument that penalizing large weight norms helps increase the
effective margin in XE loss optimization. Fig. 2a-b show the effective margin of training and
test samples for standard training (ST). L-Softmax has a benefit on the effective margins for
MLP, but not CNN. In contrast, on both architectures, EMR achieves the highest effective
margin. We show the clean and robust test accuracy curves during CNN and MLP training
in the supplemental.

Table 1 (top) shows the evaluation results of MLP when using standard training with
three methods. Two key observations are that: a) increasing λWD cannot achieve adversar-
ial robustness that is comparable with L-Softmax or EMR, indicating that more advanced
approaches are needed to maximize the effective margin; b) the adversarial robustness of
training with EMR is substantially higher than training with L-Softmax, demonstrating the
importance of regularizing effective weight norms. Table 2 (top) shows the robust accu-
racy of CNN. L-Softmax does not have a benefit over ST in this case, while EMR still
substantially improves the robustness. Note that EMR still needs WD to achieve a satisfac-
tory performance, since the weight decay handles the overall model complexity, while EMR
constrains the local weight norms.
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Empirical Results for Adversarial Training. The experiment with standard training on
clean examples suggests that EMR may also have a benefit when adversarial training (AT) is
used. Therefore, we compare WD, EMR and L-Softmax using AT [33]. In AT, the XE loss
has adversarially perturbed input,

L= XE( fθθθ (xxxi +δδδ i),yi), ‖δδδ i‖∞ ≤ ε. (6)

The perturbation is often searched by the PGD attack [33]. Here the same PGD used in the
robustness evaluation is adopted in adversarial training for both CNN and MLP. Fig. 2c-d
show the effective margin during AT. The advantage of EMR is decreased when AT is used,
but we still observe an increase of effective margin compared with the two baselines. Tables
1 and 2 (bottom) also show the robustness evaluation for AT. Although the performance
gap between EMR and the baseline is decreased compared to ST, we still observe improved
robustness for both models using EMR. See the supplemental for the clean and robust test
accuracy curve during AT of CNN and MLP.

4 Effective Margin Regularization for Large-Scale DNNs
The success of EMR on CNN and MLP provides a motivation to adopt EMR for train-
ing large-scale DNNs. One major issue of applying EMR to large-scale models is that the
computation of effective weight matrices needs a loop over image categories, which is not
scalable to large DNNs with many classes. Thus, we propose an approximation of EMR that
does not need a loop, which is more amenable to large-scale DNNs. Define llli as the logit
vector for the ith sample, and hi = ∑ j pi jli j(xxxi) as the weighted logit mean, where ∑ j pi j = 1
is a constant weight vector in a (K−1)-dim simplex. The gradient of hi with respect to xxxi is
∇xxxhi = ∑ j pi jwww

( j)
i , and its squared l2 norm is

L̂EMR(xxxi) = ‖∇xxx ∑
j

pi jli j(xxxi)‖2
2 = ∑ j ∑k pi j pik〈www

( j)
i ,www(k)

i 〉. (7)

We take this quantity as an approximation to EMR in (5), which implicitly computes the
effective weight matrix via the gradient of the logits. The original EMR regularizes the self-
product term in the summation of (7), i.e., LEMR(xxxi) = ∑ j〈www

( j)
i ,www( j)

i 〉. Thus the difference

between L̂EMR and LEMR is the cross product term between www( j)
i and www(k)

i . Minimizing the
cross product is helpful for the classification task because it decreases the cosine similarity
between different categories’ weights.

In (7), pi j will control the weight for the summation in L̂EMR, and intuitively higher
weights should be applied to the larger logits. Thus, we compute the pi j by a softmax func-
tion whose input is llli divided by a temperature t. Note that this computation is detached
from the gradient computation graph, since we require that pi j is constant. The temperature
parameter controls the weight of product terms in L̂EMR: if t→ 0, we only have the predic-
tion’s squared weight norm, i.e., L̂EMR = max j∈K ‖www( j)

i ‖2
2; if t→∞, we have a summation of

〈www( j)
i ,www(k)

i 〉 for all i, j in L̂EMR. In the empirical study, we find that selecting an appropriate
temperature parameter is able to improve the performance of EMR. In the supplemental we
show the performance of the approximate EMR (Approx-EMR) on CNN and MLP with ST
and AT. The approximation achieves a comparable performance in both models and even
better robustness in the CNN trained with AT.

Another crucial problem with EMR is that the “training mode” of a DNN with batch nor-
malization will incur correlations among the batch of samples, since the batch normalization

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2017

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2017



8 LIU AND CHAN: BRITISH MACHINE VISION CONFERENCE 2022

is used with the current batch’s mean and variance. To avoid the intertwined gradients, we
use the evaluation mode in the forward propagation when computing EMR, where we nor-
malize the input batch with the running mean and variance. In this way, we treat the DNN
as a locally linear function, and EMR still has the meaning of regularizing local weight
norms. Moreover, using evaluation mode in the effective norm computation is faster than
using training mode. See the pseudo-code is in the supplemental.

5 Large-Scale Experiments
We evaluate the proposed EMR on large-scale DNNs and show that EMR improves upon
AT, TRADES, two recent baselines [37, 41] that also aim to optimize the effective margin
and strong adversarial defense methods [26, 48].

5.1 Experimental Setting

Architectures and Datasets. We evaluate the effectiveness of EMR with ResNet18 [18]
and WideResNet-34-10 [52] following existing work on adversarial robustness [33]. The
experiment is run on CIFAR10 [21], consisting of 50k training and 10k test images. There
are 10 object categories in CIFAR10 and each category has 5000 training and 1000 test
images. Both adversarial training with PGD [33] and TRADES PGD [53] are used in the
experiment.
Training Setting. We use a standard SGD-Momentum optimizer and XE loss for training.
All experiments use an initial learning rate of 0.1 and batch size of 128. For AT-PGD, we
train the network for 100 epochs and the learning rate is divided by 10 at epochs 60 and
90. For TRADES, we train the network for 130 epochs and the learning rate is divided by
10 at epochs 60 and 120. Note that for EMR, when the learning rate is decayed, λEMR is
also divided by 10. To avoid robust overfitting [40], we split the original training set into a
training and validation set with 48k and 2k images respectively, and select a model with the
best robust test accuracy on the validation set. If not mentioned, all methods are evaluated
using the model selection based on the validation set for a fair comparison.
Evaluation. FGSM [15], PGD [33] and AutoAttack [10] are used to evaluate the adversarial
robustness of a DNN. In FGSM, PGD and AutoAttack, we use the l∞ norm as the metric to
bound the adversarial perturbation. The l∞ norm PGD attack uses gradient ascent to increase
the loss by updating the input image and projecting it to an ε-bounded l∞ ball. FGSM is
a special case of PGD using only 1 iteration. AutoAttack is an ensemble of parameter-free
attacks consisting of Auto-PGDCE , Auto-PGD with Difference of Logits Ratio loss, FAB [8]
and Squared Attack [1]. In our experiment, we use ε = 8/255 = 0.031 and α = 2/255 =
0.0078 in FGSM and PGD, and ε = 0.031 for AutoAttack. We notice that PGD without
random start is more effective than PGD with random start so our PGD evaluation starts
from the input image without random noise.
Baselines. To make a fair comparison between EMR and baseline with WD, we search the
λWD from 2e-4 to 1e-3, so that the improvement of EMR upon WD is not a result of weak
WD regularization. Besides AT and TRADES, we compare EMR with Input Gradient Reg-
ularization (IGR) [41] and Hypersphere Embedding (HE) [37]. IGR regularizes the squared
l2 norm of the loss, instead of the network output as with EMR, with respect to the input.
HE applies a normalization function to the feature, i.e., output of the penultimate layer, and
the classification layer’s weight, so that the XE loss is only determined by the cosine similar-
ity. We compare the performance of HE and our EMR in the WideResNet experiment using
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Clean Acc. FGSM PGD10 PGD100 AutoAttack
AT 87.35 59.97 53.55 52.30 50.31
AT+IGR[41] 87.49 60.32 53.49 52.42 50.42
AT+HE[37] 84.53 64.07 60.36 59.80 51.88
AT+EMR (ours) 85.74 60.67 55.43 54.62 52.20
TRADES 82.95 60.65 56.71 56.17 52.19
TRADES+IGR[41] 84.18 61.16 56.67 55.90 52.41
TRADES+HE[37] 79.61 60.95 58.23 57.99 51.49
TRADES+EMR (ours) 83.03 60.89 57.27 56.89 52.73
AT+MAIL [26] 86.96 60.90 55.42 54.53 45.07
AT+MAIL+EMR (ours) 87.33 61.32 56.77 56.00 46.25
TRADES+MAIL [26] 84.82 60.44 55.35 54.69 51.97
TRADES+MAIL+EMR (ours) 85.37 61.67 56.82 56.21 53.29
MART [48] 83.62 61.83 57.32 56.43 51.40
MART+EMR (ours) 83.55 62.87 58.09 57.43 52.16

Table 3: Evaluation of adversarial robustness using WideResNet-34-10 on CIFAR10. The
best result under the strongest attack is emphasized with bold text.

their official implementation. For IGR and HE, we use their default training parameters. For
EMR, we select the hyperparameters with grid search. The specific hyperparameter settings
are reported in the supplemental.

5.2 Experimental Results

Table 3 compares the result of vanilla AT, IGR, HE and our EMR using WideResNet-34-
10 [33]. HE and EMR improve the performance over the vanilla AT, while EMR achieves
the best result. For TRADES, HE and IGR do not improve upon the baseline by a large
margin, while EMR still achieves the best result. Note that HE has the best robust accuracy
under PGD attack, but it is easily attacked by AutoAttack, a stronger and more reliable attack
than PGD so it has become a more important evaluation method than PGD for adversarial
robustness in recent years [11, 26]. We also find that HE does not work well with TRADES
adversarial training, which is consistent with the claim in their official code repository. See
the result of using ResNet18 in the supplemental.

Probabilistic margin-aware instance re-weighting learning (MAIL) [26] is proposed to
weight samples based on the probabilistic margin piy−max j 6=y pi j, where pi j is the output
of softmax function in the XE loss. However, MAIL uses the unnormalized margin in the
re-weighting and does not consider the effective margin maximization. Thus, we can apply
our EMR in MAIL loss training to control the effective weight norm so that the re-weighting
is based on the effective margin instead of the unnormalized margin. We use the default
settings in the MAIL loss for MAIL and MAIL+EMR. All training images of CIFAR10 are
used for training and the evaluation is done on the model of the final epoch. Table 3 shows
the result of using EMR in MAIL, which demonstrates that for both AT and TRADES, there
is a substantial improvement in adversarial robustness. Fig. 3 shows the robust accuracy un-
der AutoAttack versus attack budget ε and compares MAIL with MAIL-EMR. EMR always
improves the performance in this attack range. In addition, we combine EMR with Misclas-
sification Aware adveRsarial Training (MART) [48], to demonstrate the effectiveness of our
EMR, shown in Tab. 3, where EMR also substantially improves the robustness under PGD
and AutoAttack.
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(b) TRADES-MAIL(a) AT-MAIL

Figure 3: Robust test accuracy of WideResNet under AutoAttack when ε increases. (a) and
(b) compare the original MAIL and MAIL+EMR using AT and TRADES, where left y-axis
is the absolute accuracy and right y-axis is the relative accuracy of EMR with respect to the
MAIL baseline. Our EMR always improves the robustness of MAIL across a large ε range.

Model Clean Acc. FGSM PGD10 PGD100 AA
TRADES+EWR-clean ResNet18 79.88 57.57 53.86 53.18 48.66
TRADES+EWR-adv ResNet18 79.59 57.43 53.53 53.01 48.88
TRADES+EWR-clean WRN-34-10 83.97 61.26 56.51 55.76 52.55
TRADES+EWR-adv WRN-34-10 83.03 60.89 57.27 56.89 52.73

Table 4: Comparison between TRADES+EMR using clean and adversarial images.

5.3 Ablation Studies
For TRADES+EMR, we study the difference between computing EMR using clean and ad-
versarial examples, since both images are used in TRADES training. Table 4 shows the
results. EMR with clean examples has a better clean accuracy, while EMR with adversarial
examples has a better robust accuracy. Since our target is the adversarial robustness, we
use latter setting of EMR. To evaluate the parameter sensitivity of EMR, we evaluate the
robustness of ResNet18 when selecting the hyperparameters with grid search. In the supple-
mental, we show the robust accuracy of different combinations of temperature t and λEMR.
In AT, selecting a large temperature generally improves the performance. We also report the
computational time of EMR combined with IGR and HE in the supplemental.

6 Conclusion
This paper investigates the effective margin in training DNNs with the XE loss. Our ex-
periment shows that existing methods do not adequately maximize the effective margin.
Therefore, we propose EMR to maximize the effective margin and learn an adversarially
robust DNN. On both MLP and CNN, EMR shows a clear strength over WD and L-Softmax
in terms of both effective margin and adversarial robustness. On large-scale models, we
demonstrate the efficacy of EMR by comparing with 10 strong baselines. We will explore a
fast and general EMR in future work so that our method can be applied to larger models.
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