Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization

Motivation

(a) The scale-variant property of cross-entropy loss. The loss can be

reduced while keeping the actual margin the same.

(b) The adversarial attack is not variant to the scaling.

(c) Only training with cross-entropy loss does not effectively increase the actual margin and improves adversarial robustness

Can weight decay come to rescue?

	Training	λ_{WD}	Clean Acc.	PGD20	$ ilde{m}_{ ext{train}}$	$ $ $ ilde{m}_{ ext{test}}$	_	Training
	\mathbf{ST}	0.1	77.88	34.06	$1.00 {\pm} 0.69$	$1.02{\pm}0.70$	1 -	ST
	\mathbf{ST}	0.01	96.54	48.41	$1.31{\pm}0.69$	$1.31 {\pm} 0.67$		\mathbf{ST}
	\mathbf{ST}	0.001	98.41	24.41	$1.11{\pm}0.51$	1.12 ± 0.53		ST
	\mathbf{ST}	0.0001	98.33	4.69	$0.79{\pm}0.34$	$0.79 {\pm} 0.36$	S	T+LSoftma
S	T+LSoftmax	0.1	17.83	17.27	3.13 ± 1.11	3.21 ± 1.16	S	T+LSoftma
ST+LSoftmax 0.0 ST+LSoftmax 0.0		0.01	98.00	60.59	1.91 ± 0.86	1.91 ± 0.85	S S	
		0.001	98.63	51.07	$1.82 {\pm} 0.63$	1.81 ± 0.66	с С	
\mathbf{S}	T+LSoftmax	0.0001	98.50	28.91	$1.34{\pm}0.44$	$1.34{\pm}0.47$		$SI + EMR_{0.0}$
	$ST+EMR_{0.1}$	0.001	97.50	87.56	$4.41{\pm}1.24$	$2.24{\pm}0.98$		AT
Г	AT	0.01	97.66	90.11	$1.18{\pm}0.69$	$2.27{\pm}1.07$	ו ר	AT
	AT	0.001	98.68	92.62	$1.21 {\pm} 0.69$	$2.34{\pm}0.94$	11	AT
	AT	0.0001	98.98	92.24	$1.09{\pm}0.61$	2.13 ± 0.77	A	T+LSoftma
А	T+LSoftmax	0.01	97.57	89.88	$1.18{\pm}0.69$	$2.28{\pm}1.07$	A	T+LSoftma
A	T+LSoftmax	0.001	98.72	92.60	$1.21{\pm}0.68$	$2.35{\pm}0.94$	A	T+LSoftma
A	T+LSoftmax	0.0001	99.02	92.50	$1.10{\pm}0.63$	$2.12{\pm}0.78$	A	$T + EMR_{0.0}$
A	$T + EMR_{3e-4}$	0.001	98.68	92.78	$3.83{\pm}1.27$	$2.42{\pm}0.99$		0.0

	Training		Clean Acc	PCD10	\tilde{m} .	\tilde{m}
	ST	0.01	55.77	4.19	0.39 ± 0.31	0.41 ± 0.32
	\mathbf{ST}	0.001	82.10	0.68	$0.28 {\pm} 0.19$	$0.30{\pm}0.21$
	\mathbf{ST}	0.0001	83.00	0.50	$0.22{\pm}0.15$	$0.23 {\pm} 0.17$
ST+LSoftmax ST+LSoftmax ST+LSoftmax		0.01	55.06	4.90	$0.41 {\pm} 0.33$	$0.43 {\pm} 0.34$
		0.001	82.39	0.81	$0.27 {\pm} 0.18$	$0.28 {\pm} 0.19$
		0.0001	82.73	0.29	$0.22{\pm}0.15$	$0.23 {\pm} 0.16$
$ST+EMR_{0.01}$		0.0005	69.78	16.37	$0.66 {\pm} 0.48$	$0.70 {\pm} 0.50$
T	AT	0.01	34.73	22.98	$0.90{\pm}0.82$	$1.22{\pm}1.04$
	AT	0.001	60.27	32.47	$0.76 {\pm} 0.65$	$1.09 {\pm} 0.84$
l	AT	0.0001	63.59	32.58	$0.71 {\pm} 0.60$	$1.03 {\pm} 0.78$
AT+LSoftmax		0.01	34.62	22.87	$0.91{\pm}0.82$	$1.21{\pm}1.02$
AT+LSoftmax		0.001	60.47	32.29	$0.76 {\pm} 0.65$	1.08 ± 0.84
AT+LSoftmax		0.0001	63.09	32.96	$0.71 {\pm} 0.61$	$1.03 {\pm} 0.78$
А	$T+EMR_{0.001}$	0.0005	62.79	33.41	0.74 ± 0.64	1.08 ± 0.83
					1	

(c) CIFAR10

Ziquan Liu and Antoni B. Chan

In both standard and adversarial training, increasing weight decay does not always lead to improved adversarial robustness. There are two major problems with weight decay:

- Uniform regularization for all parameters
- Does not consider local structures

Proposed Method

We propose to use the effective margin regularization (EMR) to control the effective margin during training. Difference from weight decay, the EMR regularization is dependent on input and controls the gradient norm of each local neural network.

$$l_{ij} = \boldsymbol{x}_i^T \boldsymbol{w}_i^{(j)} = \|\boldsymbol{x}_i\| \|\boldsymbol{w}_i^{(j)}\| \cos(\phi_{ij})$$
$$\mathcal{L} = \frac{1}{B} \sum_i^B XE(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i) + \lambda_{EMR} \frac{1}{B} \sum_i^B \sum_j^K \|\boldsymbol{w}_i^{(j)}\|^2$$

Computation: For a neural network without batch normalization, the samples in a batch are independent. Thus, we can take the gradient of logits $\sum_{i} l_{ii}$ with respect to input tensor and get the gradient for *j*th class.

The previous table shows the effectiveness of EMR.

Approximation of EMR in large-scale models (with batch norm)

Define l_i as the logit vector for the *i*th sample, and $h_i = \sum_i p_{ij} l_{ij}(x_i)$ as the weighted logit mean, where $\sum_{j} p_{ij} = 1$ is a constant weight vector in a (K – 1)-dim simplex. The gradient of h_i with respect to x_i is $\nabla_x h_i = \sum_j p_{ij} w_i^{(j)}$ and its squared I2 norm is

$$\hat{\mathcal{L}}_{EMR}(\boldsymbol{x}_i) = \|\nabla_{\boldsymbol{x}} \sum_{j} p_{ij} l_{ij}(\boldsymbol{x}_i)\|_2^2 = \sum_{j} \sum_{k} p_{ij} p_{ik} \langle \boldsymbol{w}_i^{(j)}, \boldsymbol{w}_i^{(k)} \rangle$$

We set the p as the output of a softmax function with input logit l divided by a temperature parameter, which controls the penalty on logits.

Main Algorithm

Experiment Result

We use WideResNet-34-10 as the backbone for the experiment and test the performance on CIFAR10. The adversarial attack is l_{∞} bounded with an epsilon of 8/255.

Clean Acc.	FGSM	PGD10	PGD100	AutoAttack
87.35	59.97	53.55	52.30	50.31
87.49	60.32	53.49	52.42	50.42
84.53	64.07	60.36	59.80	51.88
85.74	60.67	55.43	54.62	52.20
82.95	60.65	56.71	56.17	52.19
84.18	61.16	56.67	55.90	52.41
79.61	60.95	58.23	57.99	51.49
83.03	60.89	57.27	56.89	52.73
86.96	60.90	55.42	54.53	45.07
87.33	61.32	56.77	56.00	46.25
84.82	60.44	55.35	54.69	51.97
85.37	61.67	56.82	56.21	53.29
83.62	61.83	57.32	56.43	51.40
83.55	62.87	58.09	57.43	52.16
	Clean Acc. 87.35 87.49 84.53 85.74 82.95 84.18 79.61 83.03 86.96 83.03 86.96 87.33 84.82 85.37 83.62 83.55	Clean Acc.FGSM87.3559.9787.4960.3284.5364.0785.7460.6782.9560.6584.1861.1679.6160.9583.0360.8986.9660.9087.3361.3284.8260.4485.3761.6783.6261.8383.5562.87	Clean Acc.FGSMPGD1087.3559.9753.5587.4960.3253.4984.5364.0760.3685.7460.6755.4382.9560.6556.7184.1861.1656.6779.6160.9558.2383.0360.8957.2786.9660.9055.4287.3361.3256.7784.8260.4455.3585.3761.6756.8283.6261.8357.3283.5562.8758.09	Clean Acc.FGSMPGD10PGD10087.3559.9753.5552.3087.4960.3253.4952.4284.5364.0760.3659.8085.7460.6755.4354.6282.9560.6556.7156.1784.1861.1656.6755.9079.6160.9558.2357.9983.0360.8957.2756.8986.9660.9055.4254.5387.3361.3256.7756.0084.8260.4455.3554.6983.6261.8357.3256.4383.5562.8758.0957.43

Table 3. Evaluation of adversarial robustness using WideResNet-34-10 on CIFAR10. The best result under the strongest attack is emphasized with bold text.