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A Experimental Settings

Model Architecture. Section 3 uses an MLP and CNN to demonstrate the effective margin
maximization effect of EMR. The MLP has 4 hidden layers with 1024 hidden neurons and
one output layer. The CNN has an architecture as in Table S1, where the parameter in the
convolution layer means CONV(kernel_size, output_channel, stride, padding) and in the
average pooling layer means Average_Pooling(kernel_size, stride). For both models we use
ReLU as the activation function.

Layer 1 CONV(5,32,1,padding=None)
Layer 2 CONV(5,64,1,padding=None)
Layer 3 Average_Pooling(2,2,padding=None)
Layer 4 CONV(3,128,1,padding=None)
Layer 5 CONV(3,128,1,padding=None)
Layer 6 Global_Average_Pooling
Layer 6 Linear(128,10)
Table S1: The architecture of CNN in Section 3.

Hyperparameters. We searched the hyperparameters for the adversarial training base-
lines and our method, Table S2 and S3 show the hyperparameters used in the experiment we
report. In MAIL, we use the WideResNet-34-10 and default settings in the MAIL loss [2].
AT-MAIL has a slope of 30 and bias of 0.07 . TRADES-MAIL has a slope of 5 and bias of
0.05, where β=5.0. All MAIL experiment uses a weight decay of 2e-4. In AT-MAIL-ERM,
λEMR=1.0, t=1.0. In TRADES-MAIL-ERM, λEMR=3.0, t=1.0. We use PGD10 attack with a
step size of 0.00784 during adversarial training of MAIL and the initial learning rate 0.1 is
decayed by 10 at 75 and 90 epoch, with a maximum epoch of 100. In MART+EMR [5], we
use the default setting of MART loss from the official code, where β = 6.0, the step size of
PGD attack is 0.007 and step is 10. With the MART loss, the WideResNet-34-10 is trained
for 90 epochs and the initial learning rate 0.1 is divided by 10 at 75 and 90 epoch, and we let
λEMR = t =1.0. In LBGAT+EMR [1], we use the default setting in the official code, where
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(a) Standard Training with WD (b) Standard Training with L-Softmax

Epoch Epoch

(d) Adv Training with WD (e) Adv Training with L-Softmax

(c) Standard Training with EMR

Epoch

(f) Adv Training with EMR

Figure S1: Training curve on MNIST with 4-hidden layer MLP. In normal training, EMR
achieves significantly higher robust test accuracy than two baselines and is even comparable
with that of adversarial training.

the teacher model is a randomly initialized ResNet18, the student model is a WideResNet34-
10, β =0.0 (without TRADES) and step size of PGD10 is 0.003. We train the model for 100
epochs and divide the initial learning rate 0.1 by 10 at 76 and 91 epoch, and let λEMR = 0.5
and t =1. For the MART and LBGAT baseline, we evaluate the official models released
by the authors. Note that we use the l∞-bound adversarial examples with an ε = 0.031 in
training and evaluation of all experiment. The algorithm for adversarial training with EMR
is shown in Algorithm 1. We include the code to use our method in the supplemental.

B More Experiment Result

Fig. S2 and Fig. S1 show the clean and robust test accuracy curves during CNN and MLP
training. For the MLP, EMR achieves a high robust accuracy at an early stage of training.
For the CNN, EMR shows an oscillation of robust test accuracy at an early stage, but the
accuracy becomes stable when the learning rate is decayed.

Table S4 shows the performance of the approximate EMR (Approx-EMR) on CNN and
MLP with ST and AT. The approximation achieves a comparable performance in both mod-
els and even better robustness in the CNN trained with AT. Table S5 shows the result of
vanilla AT, IGR and our EMR on ResNet18. Compared with AT and IGR, the adversarial
robustness (as measured by AutoAttack) is substantially improved when EMR is used. For
TRADES, the improvement is not as significant as with AT. Note that IGR does not improve
the performance substantially for either AT or TRADES.

To evaluate the parameter sensitivity of EMR, we evaluate the robustness of ResNet18
when selecting the hyperparameters with grid search. Fig. S3 shows the robust accuracy
of different combinations of temperature t and λEMR. In AT, selecting a large temperature
generally improves the performance.
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(a) Standard Training with WD (b) Standard Training with L-Softmax

Epoch Epoch

(d) Adv Training with WD (e) Adv Training with L-Softmax

(c) Standard Training with EMR

Epoch

(f) Adv Training with EMR

Figure S2: Training curve on CIFAR10 with 4-hidden layer CNN. In standard training, EMR
has a higher robust test accuracy than training with WD or L-Softmax. In adversarial train-
ing, EMR also achieves the best robust accuracy.

Figure S3: Robust test accuracy under PGD10 attack when training a ResNet18 on CIFAR10
with different hyperparameters.

Finally, we evaluate the computational time of EMR. Table S6 shows a comparison be-
tween training time of one SGD update of EMR, IGR, HE and the vanilla AT/TRADES when
a WideResNet is used. EMR and IGR have approximately the same computational time that
is longer than HE, since the loss requires an extra backpropagation. HE has a benefit in the
computational time during training, but the normalization layers bring extra computation for
the inference stage. In contrast, EMR does not need more computation during inference.
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Algorithm 1: Adv. Training with Effective Margin Regularization
Input: Training data Dtr, EMR parameter λEMR, EMR temperature t, learning rate

η , beta of TRADES β

Output: Model parameters θθθ

Initialize model parameters;
for i = 1, . . . ,Ne do

Adjust η and λEMR;
Split Dtr into NB =ceil(Ntr/B) batches;
for b = 1, . . . ,NB do

Generate adversarial examples {x̃xxi,yi}B
i=1;

if AT then
L= 1

B ∑
B
i=1 XE( fθθθ (x̃xxi),yi);

end
if TRADES then
L= 1

B ∑i XE( fθθθ (xxxi),yi)+β
1
B ∑iDKL( fθθθ (x̃xxi), fθθθ (xxxi));

end
% EMR:
pppi=softmax( fθθθ (x̃xxi)/t) and detach the gradient;
LEMR = 1

B ∑
B
i ‖∇xxx ∑

K
j=1 pi jli j(x̃xxi)‖2

2 (eval mode);
θθθ := θθθ −η∇θθθ (L+λEMRLEMR)

end
end

Hyperparameters
AT λWD=1e-3

AT+IGR λWD=1e-3, λIGR=1.0
AT+EWR λWD=5e-4, λEMR=0.1, t=40.0
TRADES β=12.0, λWD=5e-4

TRADES+IGR β=12.0, λWD=5e-4, λIGR=1.0
TRADES+EWR β=12.0, λWD=5e-4, λEMR=0.3, t=0.1

Table S2: Hyperparameters of ResNet18.

Hyperparameters
AT λWD=1e-3

AT+IGR λWD=1e-3, λIGR=1.0
AT+EWR λWD=5e-4, λEMR=1.0, t=40.0
TRADES β=12.0, λWD=5e-4

TRADES+IGR β=12.0, λWD=5e-4, λIGR=1.0
TRADES+EWR β=12.0, λWD=5e-4, λEMR=0.3, t=1.0

Table S3: Hyperparameters of WideResNet.
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Model Training λWD Clean Acc. PGD m̃train m̃test

MLP

ST+EMR0.1 0.001 97.50 87.56 4.41±1.24 2.24±0.98
ST+Approx-EMR1.0 0.001 98.44 77.09 0.85±0.71 1.73±0.73
AT+EMR0.0003 0.001 98.68 92.78 3.83±1.27 2.42±0.99
AT+Approx-EMR0.0003 0.001 98.75 92.76 4.00±1.30 2.35±0.94

CNN

ST+EMR0.01 0.0005 69.78 16.37 0.66±0.48 0.70±0.50
ST+Approx-EMR30.0 0.0005 71.09 15.05 0.65±0.48 0.68±0.50
AT+EMR0.001 0.0005 62.79 33.41 0.74±0.64 1.08±0.83
AT+Approx-EMR0.0003 0.0005 63.15 33.63 0.73±0.62 1.07±0.81

Table S4: Comparison between EMR and its large-scale approximation.

Clean Acc. FGSM PGD10 PGD100 AutoAttack
AT 83.39 56.95 50.88 50.07 46.90
AT+IGR[4] 84.01 56.97 51.03 49.66 46.52
AT+EWR (ours) 81.71 56.39 51.97 51.18 47.94
TRADES 79.68 57.62 53.67 53.00 48.56
TRADES+IGR[4] 78.61 57.34 53.70 53.08 48.48
TRADES+EWR (ours) 79.59 57.43 53.53 53.01 48.86

Table S5: Evaluation of adversarial robustness using ResNet18 on CIFAR10.

Standard IGR[4] HE[3] EMR(ours)
AT 2.46(.01) 3.21(.01) 2.75(.01) 3.22(.01)

TRADES 2.93(.01) 3.67(.01) 3.32(.01) 3.67(.01)
Table S6: Running time (in second) of one SGD iteration. The time is recorded with
WideResNet-34-10 on a Nvidia-V100 with a batch size of 128.
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