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Abstract

In this paper, we consider the problem of generalised visual object counting, with
the goal of developing a computational model for counting the number of objects from
arbitrary semantic categories, using an arbitrary number of “exemplars”, i.e. zero-shot
or few-shot counting. To this end, we make the following four contributions: (1) We
introduce a novel transformer-based architecture for generalised visual object counting,
termed a Counting TRansformer (CounTR), which explicitly captures the similarity be-
tween image patches or with given exemplars using the attention mechanism; (2) We
adopt a two-stage training regime, that first pre-trains the model with self-supervised
learning, followed by supervised fine-tuning; (3) We propose a simple, scalable pipeline
for synthesizing training images with a large number of instances or from different se-
mantic categories, explicitly forcing the model to make use of the given exemplars; (4)
We conduct thorough ablation studies on a large-scale counting benchmark, FSC-147,
and demonstrate state-of-the-art performance on both zero and few-shot settings. Project
page: https://verg-avesta.github.io/CounTR_Webpage/.

1 Introduction
Despite all its exceptional abilities, the human visual system is particularly weak in counting
objects in an image. In fact, given a visual scene with a collection of objects, one can only
make a rapid, accurate, and confident judgment if the number of items is below five, with an
ability known as subitizing [14]. While for scenes with an increasing number of objects, the
accuracy and confidence of the judgments tend to decrease dramatically. Until at some point,
counting can only be accomplished by calculating estimates or enumerating the instances,
which incurs low accuracy or tremendous time cost.

In this paper, our goal is to develop a generalised visual object counting system, that
augments humans’ ability for determining the number of objects in a visual scene. Specifi-
cally, generalised visual object counting refers to the problem of identifying the number of
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salient objects of arbitrary semantic class in an image (i.e. open-world visual object count-
ing) with arbitrary number of instance “exemplars” provided by the end user, to select the
particular objects to be counted, i.e. from zero-shot to few-shot object counting. To this end,
we propose a novel architecture that transforms the input image (with the few-shot annota-
tions if any) into a density map, and the final count can be obtained by simply summing over
the density map.

We take inspiration from Lu et al. [16] that self-similarity is a strong prior in visual object
counting, and introduce a transformer-based architecture where the self-similarity prior can
be explicitly captured by the built-in attention mechanisms, both among the input image
patches and with the few-shot annotations (if any). We propose a two-stage training scheme,
with the transformer-based image encoder being firstly pre-trained with self-supervision via
masked image modeling [9], followed by supervised fine-tuning for the task at hand. We
demonstrate that self-supervised pre-training can effectively learn the visual representation
for counting, thus significantly improving the performance. Additionally, to tackle the long-
tailed challenge in existing generalised visual object counting datasets, where the majority of
images only contain a small number of objects, we propose a simple, yet scalable pipeline for
synthesizing training images with a large number of instances, as a consequence, establishing
reliable data sources for model training, to condition the user-provided instance exemplars.

To summarise, in this paper, we make four contributions: First, we introduce an archi-
tecture for generalised visual object counting based on a transformer, termed CounTR (pro-
nounced counter). It exploits the attention mechanisms to explicitly capture the similarity
between image patches, or with the few-shot instance exemplars provided by the end user;
Second, we adopt a two-stage training regime (self-supervised pre-training, followed by su-
pervised fine-tuning) and show its effectiveness for the task of visual counting; Third, we
propose a simple yet scalable pipeline for synthesizing training images with a large number
of instances, and demonstrate that it can significantly improve the performance on images
containing a large number of object instances; Fourth, we conduct thorough ablation studies
on large-scale counting benchmarks, including FSC-147 [20] and CARPK [11], and demon-
strate state-of-the-art performance on both zero-shot and few-shot settings, improving over
the previous best approach by a noticeable margin on the mean absolute error of the FSC-147
test set.

2 Related Work

Visual object counting. In the literature, object counting approaches can generally be
cast into two categories: detection-based counting [3, 5, 11] or regression-based count-
ing [1, 2, 4, 13, 15, 17, 22]. The former relies on a visual object detector that can localize
object instances in an image. This method, however, requires training individual detectors
for different objects, and the detection problem remains challenging if only a small number
of annotations are given. The latter avoids solving the hard detection problem, instead, meth-
ods are designed to learn either a mapping from global image features to a scalar (number of
objects), or a mapping from dense image features to a density map, achieving better results
on counting overlapping instances. However, previous methods from both lines (detection,
regression) have only been able to count objects of one particular class (e.g. cars, cells).

Class-agnostic object counting. Recently, class-agnostic few-shot counting [16, 20, 23]
has witnessed a rise in research interest in the community. Unlike the class-specific models
that could only count objects of specific classes like cars, cells, or people, class-agnostic
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counting aims to count the objects in an image based on a few given “exemplar” instances;
thus it is also referred to as ‘few-shot counting’. Generally speaking, class-agnostic few-shot
counting models need to mine the commonalities between the instances of different classes
of objects during training. In [16], the authors propose a generic matching network (GMN),
which regresses the density map by computing the similarity between the CNN features
from image and exemplar shots; FamNet [20] utilizes feature correlation for prediction and
uses an adaptation loss to update the model’s parameters at test time; SAFECount [23] uses
a support feature to enhance the query feature, making the extracted features more refined
and then regresses to obtain density maps. In a very recent work [10], the authors exploit a
pre-trained DINO [18] model and a lightweight regression head to count without exemplars.
In our approach, we also use a transformer-based architecture, however, it is trained from
scratch, and augmented with the ability to count the objects given any shot.

3 Methods

In this paper, we consider the challenging problem of generalised visual object counting,
where the goal is to count the salient objects of an arbitrary semantic class in an image,
i.e. open-world visual object counting, with arbitrary number of exemplars provided by the
end user, i.e. from zero-shot to few-shot object counting.

Overview. Given a training set, Dtrain = {(X1,S1,y1), . . . ,(XN ,SN ,yN)}, where Xi ∈RH×W×3

denotes the input image, Si = {bi}K denotes the box coordinates (bk
i ∈ R4) for a total of

K ∈ {0,1,2,3...} given exemplars, i.e. zero-shot or few-shot counting, yi ∈ RH×W×1 refers
to a binary spatial density map, with 1’s at the objects’ center location, indicating their ex-
istence, and 0’s at other locations without the objects; the object count can thus be com-
puted by spatially summing over the density map. Our goal here is to train a generalised
visual object counter that can successfully operate on a test set, given zero or few exemplars,
i.e. Dtest = {(XN+1,SN+1), . . . ,(XM,SM)}. Note that, the semantic categories for objects in
the training set (Ctrain) and testing set (Ctest) are disjoint, i.e. Ctrain ∩Ctest = /0.

To achieve this goal, we introduce a novel transformer-based architecture, called the
Counting TRansformer (CounTR). Specifically, the attention mechanism in the transformer
enable it to explicitly compare visual features between any other spatial locations and with
exemplars, which are provided by the end user in the few-shot scenario. In Section 3.2,
we further introduce a two-stage training regime, in which the model is firstly pre-trained
with self-supervision via masked image reconstruction (MAE), followed by fine-tuning on
the downstream counting task. To the best of our knowledge, this is the first work to show
the effectiveness of self-supervised pre-training for generalised visual object counting. Ad-
ditionally, in Section 3.3, we propose a novel and scalable mosaic pipeline for synthesizing
training images, as a way to resolve the challenge of long-tailed distribution (i.e. images with
a large number of instances tend to be less frequent) in the existing object counting dataset.
In Section 3.4, we will introduce our test-time normalisation method including test-time
cropping.

3.1 Architecture

Here, we introduce the proposed Counting TRansformer (CounTR), as shown in Figure 1.
The input image (Xi), and user-provided exemplars (Sk

i ,∀k ∈ {0,1,2,3}) are fed as input and
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Figure 1. Architecture detail for CounTR. The query image and exemplars are encoded by separate
visual encoders. The image features are then fed into the feature interaction module as query vectors,
and the exemplar features are fed as key and value vectors. When there is no instance exemplar
provided, a learnable [SPE] token is used as key and value instead. The outputs are up-sampled in
the decoder and finally, we get the corresponding density map. The object count can be obtained
by summing the density map. Note that, given the different exemplars with diversity, the model
should ideally understand the invariance (shape, color, scale, texture). For example, if the three given
exemplars are all of the same color, the model should only count the objects of that color, otherwise,
count all instances of the same semantic.

mapped to a density heatmap, where the object count can be obtained by simply summing
over it:

yi = ΦDECODER(ΦFIM(ΦVIT-ENC(Xi),ΦCNN-ENC(Sk
i ))), ∀k ∈ {0,1, ...,K} (1)

In the following sections, we will detail the three building components, namely, visual en-
coder (ΦVIT-ENC(·) and ΦCNN-ENC(·)), feature interaction module (i.e. FIM, ΦFIM(·)), and
visual decoder (ΦDECODER(·)).

3.1.1 Visual Encoder

The visual encoder is composed of two components, serving two purposes: first, an encoder
based on a Vision Transformer (ViT) [6] for processing the input image that maps it into
a high-dimensional feature map; second, an encoder to compute the visual features for the
exemplars, if there are any. Specifically, as for ViT, the input image is broken into patches
with a size of 16×16 pixels and projected to tokens by a shared MLP. To indicate the order of
each token in the sequence, positional encoding is added, ending up with M ‘tokens’. They
are further passed through a series of transformer encoder layers, in our model, 12 layers
are used. We do not include the [CLS] token in the sequence, and the output from the ViT
encoder is a sequence of D-dim vectors :

FVIT = ΦVIT-ENC(Xi) ∈ RM×D (2)

for more details, we refer the readers to the original ViT paper.
For few-shot counting, we use the exemplar encoder to extract the visual representation.

It exploits a lightweight ConvNet architecture (4 convolutional layers, followed by a global
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average pooling), that maps the given exemplars (resized to the same resolution) into vectors,

FCNN = ΦCNN-ENC(Sk
i ) ∈ RK×D (3)

Note that, under the zero-shot scenario with no exemplar given, we adopt a learnable [SPE]
token as the substitute to provide cues for the model.

3.1.2 Feature Interaction Module

Here, we introduce the proposed feature interaction module (FIM), for fusing information
from both encoders. Specifically, the FIM is constructed with a series of standard trans-
former decoder layers, where the image features act as the Query, and two different linear
projections (by MLPs) of the exemplar features (or learnable special token), are treated as the
Value and Key. With this design, the output from the FIM remains the same dimensions
as the image features (FVIT), throughout the interaction procedure:

FFIM = ΦFIM(FVIT, Wk ·FCNN, Wv ·FCNN) ∈ RM×D (4)

Conceptually, such a transformer architecture perfectly reflects the self-similarity prior to the
counting problem, as observed by Lu et al. [16]. In particular, the self-attention mechanism
in the transformer decoder enables it to measure the self-similarity between regions of the
input image, while the cross-attention between Query and Value allows it to compare
image regions with the arbitrary given shots, incorporating users’ input for more customised
specification on the objects of interest, or simply learning to ignore the ConvNet branch when
encountering the learnable [SPE] token.

3.1.3 Decoder

At this stage, the outputs from the feature interaction module are further reshaped back to 2D
feature maps and restored to the original resolution as the input image. We adopt a progres-
sive up-sampling design, where the vector sequence is first reshaped to a dense feature map
and then processed by a ConvNet-based decoder. Specifically, we use 4 up-sampling blocks,
each of which consists of a convolution layer and a 2× bilinear interpolation. After the last
up-sampling, we adopt a linear layer as the density regressor, which outputs a one-channel
density heatmap:

yi = ΦDECODER(FFIM) ∈ RH×W×1 (5)

3.2 Two-stage Training Scheme

In images, the visual signals are usually highly redundant, e.g. pixels within local regions are
spatially coherent. This property is even more obvious in the counting problem, as the objects
often tend to appear multiple times in a similar form. Based on this observation, we employ
MAE self-supervised learning to pre-train the visual encoder (ΦVIT-ENC(·)). Specifically,
we adopt the recent idea from Masked Autoencoders (MAE), to train the model by image
reconstruction with only partial observations.
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(a) Type A: using four images. (b) Type B: using one image.

Figure 2. The mosaic pipeline for synthesizing training images. (1) stands for crop and scale,
and (2) stands for collage and blending. Type A uses four different images to improve background
diversity and Type B uses only one image to increase the number of objects contained in an image.
White highlights are the dot annotation density map after Gaussian filtering for visualization.

Self-supervised Pre-training with MAE. In detail, we first divide the image into regular
non-overlapping patches, and only sample a subset of the patches (50% in our case) as input
to the ViT encoders. The computed features are further passed through a lightweight de-
coder, consisting of several transformer decoder layers, where the combination of learnable
mask tokens and positional encoding is used as Query to reconstruct the input image from
only observed patches. The training loss is simply defined as the Mean Squared Error (MSE)
between the reconstructed image and the input image in pixel space.

Supervised Fine-tuning. After the pre-training, we initialise the image encoder with the
weights of the pre-trained ViT, and fine-tune our proposed architecture on generalised object
counting. In detail, our model takes the original image Xi and K exemplars Si = {bi}K from
Dtrain as input and outputs the density map ŷi ∈RH×W×1 corresponding to the original image
Xi. The statistical number of salient objects in the image Ci ∈R can be obtained by summing
the discrete density map ŷi. We use the mean square error per pixel to evaluate the difference
between the predicted density map ŷi and the ground truth density map yi. The ground truth
density maps are generated based on the dot annotations: L(ŷi,yi) =

1
HW ∑ ||yi − ŷi||22.

3.3 Scalable Mosaicing
In this section, we introduce a scalable mosaic pipeline for synthesizing training images,
in order to tackle the long-tailed problem (i.e. very few images contain a large number of
instances) in existing counting datasets. We observe that existing datasets for generalised
object counting are highly biased towards a small number of objects. For example, in the
FSC-147 dataset, only 6 out of 3659 images in the train set contain more than 1000 ob-
jects. This is potentially due to the costly procedure for providing manual annotation. In the
following, we elaborate on the two steps of the proposed mosaic training data generation,
namely, collage and blending (as shown in Figure 2). Note that, we also notice one concur-
rent work [10] uses a similar idea.

Collage. Here, we first crop a random-sized square area from the image and scale it to a
uniform size, e.g. a quarter of the size of the original image. After repeating the region crop-
ping multiple times, we collage the cropped regions together and update the corresponding
density map. It comes in two different forms: using only one image or four different images.
If we only use one image, we can increase the number of objects contained in the image,
which helps a lot with tackling the long-tail problem. If we use four different images, we
can significantly improve the training images’ background diversity and enhance the model’s
ability to distinguish between different classes of objects. To fully use these two advantages,
we make the following settings. If the number of objects contained in the image is more than
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(a) Test-time Normalisation.

(b) Test-time Cropping.

Figure 3. The test-time normalisation process visualisation. In test-time normalisation, if the
average sum of the exemplar positions in the density map is over 1.8, the sum of the density map
will be divided by this average to become the final prediction. In test-time cropping, if at least one
exemplar’s side length is smaller than 10 pixels, the image will be cropped into 9 pieces and the
model will process these 9 images separately. The final prediction will be the sum of the results of
these 9 images.

a threshold, we use the same image to collage; if not, we use four different images. Note
that if four different images are used, we could only use the few-shot setting for inference,
otherwise the model will not know which object to count. If we use the same image, the
mosaiced image can be used to train the few-shot setting and zero-shot setting.

Blending. Simply cropping and collaging does not synthesize perfect images, as there re-
main sharp artifacts between the boundaries. To resolve these artifacts, we exploit blending
at the junction of the images. In practise, we crop the image with a slightly larger size than a
quarter of the original image size, such that we can leave a particular space at the border for
α-channel blending. We use a random α-channel border width, which makes the image’s
composition more realistic. Note that, we only blend the original image instead of the den-
sity map, to maintain the form of dot annotation (only 0 and 1). Since there are few objects
inside the blending border and the mosaic using one image is only applied to images with a
very large number of objects, the error caused by blending is almost negligible.

3.4 Test-time Normalisation

For few-shot counting, we have introduced a test-time normalisation strategy to calibrate the
output density map. Specifically, at inference time, we exploit the prior knowledge that the
object count at the exemplar position should exactly be 1.0, any prediction deviation can
thus be calibrated by dividing the density map by the current predicted count at the exemplar
position. We take this approach because due to the ambiguity of the bounding boxes, the
model sometimes chooses the smallest self-similarity unit of an object to count, rather than
the entire object, as shown in Figure 3 (a). Therefore, if the average sum of the density map
area corresponding to the bounding boxes exceeds a threshold, such as 1.8, we will exploit
this test-time normalisation approach.

Additionally, for images with tiny objects (one exemplar with a side length shorter than
10 pixels), we adopt a sliding window prediction, by dividing the image equally into nine
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pieces and scaling them to their original size, to be individually processed by our model. The
total number of objects is the sum of the individual count results of the nine images.

4 Experiments

Here, we start by briefly introducing the few-shot counting benchmark, FSC-147 dataset,
and the evaluation metrics. In Section 4.2, we describe the implementation details of our
model and the design of test-time normalisation; In Section 4.3, we compare our model’s
performance with other counting models and demonstrate state-of-the-art performance on
both zero-shot and few-shot settings; In Section 4.4, we conduct a series of ablation studies
to demonstrate the effectiveness of the two-stage training and the image mosaicing.

4.1 Datasets and Metrics

Datasets. We experiment on FSC-147 [20], which is a multi-class few-shot object count-
ing dataset containing 6135 images. Each image’s number of counted objects varies widely,
ranging from 7 to 3731, and the average is 56. The dataset also provides three randomly
selected object instances annotated by bounding boxes as exemplars in each image. The
training set has 89 object categories, while the validation and test sets both have 29 disjoint
categories, making FSC-147 an open-set object counting dataset.

Metrics. We use two standard metrics to measure the performance of our model, namely,
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

MAE =
1
NI

NI

∑
i=1

|Ci −CGT
i |, RMSE =

√√√√ 1
NI

NI

∑
i=1

(Ci −CGT
i )2 (6)

Here, NI is the total number of testing images, and Ci and CGT
i are the predicted number

and ground truth of the ith image.

4.2 Implementation

4.2.1 Training Details

In this section, we give the details of our proposed two-stage training procedure. That is, first
pre-train the ViT encoder with MAE [9], and then fine-tune the whole model on supervised
object counting.

MAE Pre-training. As input, the image is of size 384 × 384, which is first split into
patches of size 16× 16, and projected into 576 vectors. Our visual encoder uses 12 trans-
former encoder blocks with a hidden dimension of 768, and the number of heads in the
multi-head self-attention layer is 12. The decoder uses 8 transformer layers with a hidden
dimension of 512. As input for pre-training ViT with MAE, we randomly drop 50% of the
visual tokens, and task the model to reconstruct the masked patches with pixel-wise mean
square error. During pre-training, we chose a batch size of 16 and trained on the FSC-147
for 300 epochs with a learning rate of 5×10−6.
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Fine-tuning stage. The feature interaction module uses 2 transformer decoder layers with
a hidden dimension of 512. The ConvNet encoder exploits 4 convolutional layers and a
global average pooling layer to extract exemplar features with 512 dimensions. The image
decoder uses 4 up-sampling layers with a hidden dimension of 256. For optimisation, we
minimise the mean square error between the model’s prediction and the ground truth density
map, which is generated with Gaussians centered on each object. We scale the loss by a
factor of 60, and randomly drop 20% non-object pixels, to alleviate the sample imbalance
issue. We use AdamW as the optimiser. Our model is trained on the FSC-147 training set
with a learning rate of 1× 10−5 and a batch size of 8. Our model is trained and tested on
NVIDIA GeForce RTX 3090.

4.2.2 Inference Details

At inference time, we adopt sliding windows for images of different resolutions, with the
model processing a portion of an image with a fixed-size square window as used in training,
and gradually moving forward with a stride of 128 pixels. The density map for overlapped
regions is simply computed by averaging the predictions.

4.3 Comparison to state-of-the-art
We evaluate the proposed CounTR model on the FSC-147 dataset and compare it against
existing approaches. As shown in Table 1, CounTR has demonstrated new state-of-the-art
on both zero-shot and few-shot counting, outperforming the previous methods significantly.
For results on Val-COCO, Test-COCO [20], and CARPK [11], we refer the readers to the
appendix.

Methods Year Backbone # Shots Val Test

MAE RMSE MAE RMSE

RepRPN-C [19] Arxiv2022 ConvNets 0 31.69 100.31 28.32 128.76
RCC [10] Arxiv2022 Pre-trained ViT 0 20.39 64.62 21.64 103.47

CounTR (ours) 2022 ViT 0 17.40 70.33 14.12 108.01

FR [12] ICCV2019 ConvNets 3 45.45 112.53 41.64 141.04
FSOD [7] CVPR2020 ConvNets 3 36.36 115.00 32.53 140.65

P-GMN [16] ACCV2018 ConvNets 3 60.56 137.78 62.69 159.67
GMN [16] ACCV2018 ConvNets 3 29.66 89.81 26.52 124.57
MAML [8] ICML2017 ConvNets 3 25.54 79.44 24.90 112.68

FamNet [20] CVPR2021 ConvNets 3 23.75 69.07 22.08 99.54
BMNet+ [21] CVPR2022 ConvNets 3 15.74 58.53 14.62 91.83

CounTR (ours) 2022 ViT 3 13.13 49.83 11.95 91.23

Table 1. Comparison with state-of-the-art on the FSC-147 dataset. P-GMN stands for Pre-
trained GMN. RepRPN-C stands for RepRPN-Counter. RCC stands for reference-less class-agnostic
counting with weak supervision.

4.4 Ablation Study
In this section, we have conducted thorough ablation studies to demonstrate the effective-
ness of the proposed ideas. As shown in Table 2, we can make the following observations:
(1) Data augmentation: While comparing the Model-A, we include image-wise data aug-
mentation in Model-B training, including Gaussian noise, Gaussian blur, horizontal flip,
color jittering, and geometric transformation. As indicated by the result, Model B slightly
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outperforms Model A on both validation and test set, suggesting that these augmentation
methods can indeed be useful to the model to a certain extent. (2) Self-supervised pre-
training: In Model-C, we introduce the self-supervised pre-training for warming up the ViT
encoder. Compared with Model B which directly fine-tunes the ViT encoder (pre-trained on
ImageNet) on the FSC-147 training set, Model C has improved all results on both valida-
tion and test sets significantly. (3) Effectiveness of mosaic: With the help of the mosaic
method, Model-D has shown further performance improvements, demonstrating its effec-
tiveness for resolving the challenge from the long-tailed challenge, by introducing images
with a large number of object instances, and object distractors from different semantic cate-
gories. (4) Test-time normalisation: In Model-E, we experiment with test-time normalisa-
tion for the few-shot counting scenario, where the output prediction is calibrated by the given
exemplar shot. On both validation and test set, test-time normalisation has demonstrated sig-
nificant performance boosts. (5) On shot number: In Model E, as the number of given shots
increases, i.e. 1, 2, or 3, we observe only tiny differences in the final performance, showing
the robustness of CounTR for visual object counting under any shots.

Model Augmentation Selfsup Mosaic TT-Norm. # Shots Val Test

MAE RMSE MAE RMSE

A0 % % % % 0 24.84 86.33 21.06 130.04
A1 % % % % 3 24.68 85.89 20.98 129.58

B0 ! % % % 0 23.80 81.53 21.14 131.27
B1 ! % % % 3 23.67 81.40 20.93 130.75

C0 ! ! % % 0 18.30 72.21 16.20 114.30
C1 ! ! % % 3 18.19 71.47 16.05 113.11

D0 ! ! ! % 0 18.07 71.84 14.71 106.87
D1 ! ! ! % 3 17.40 70.33 14.12 108.01

E1 ! ! ! ! 1 13.15 49.72 12.06 90.01
E2 ! ! ! ! 2 13.19 49.73 12.02 90.82
E3 ! ! ! ! 3 13.13 49.83 11.95 91.23

E3 (no 7171.jpg) ! ! ! ! 3 13.13 49.83 11.22 87.68

Table 2. Ablation study. We observe that one image in the test set (image id:7171) has significant
annotation error (see supp. material), result without it has also been reported. Selfsup: refers to the
proposed two-stage training regime. TT-Norm: denotes test-time normalisation

5 Conclusion
In this work, we aim at the generalised visual object counting problem of counting the num-
ber of objects from arbitrary semantic categories using an arbitrary number of “exemplars”.
We propose a novel transformer-based architecture for it, termed CounTR. It is first pre-
trained with self-supervised learning, and followed by supervised fine-tuning. We also pro-
pose a simple, scalable pipeline for synthesizing training images that can explicitly force the
model to make use of the given “exemplars”. Our model achieves state-of-the-art perfor-
mance on both zero-shot and few-shot settings.
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