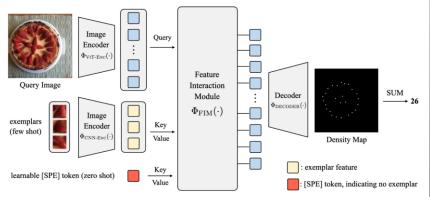


CounTR: Transformer-based Generalised Visual Counting


Chang Liu, Yujie Zhong, Andrew Zisserman, Weidi Xie

Project page: https://verg-avesta.github.io/CounTR Webpage/

Generalised Visual Object Counting

The goal is to count the salient objects of arbitrary semantic class in an image, i.e. open-world visual object counting, with arbitrary number of "exemplars" provided by the end users, i.e. from zeroshot to few-shot object counting

Architecture of Counting Transformer(CounTR)

- Visual Encoder
- ViT-based Query Image Encoder
- CNN-based Exemplar Encoder
- **Feature Interaction Module**
- Transformer Decoder Blocks
- Visual Decoder
 - Progressive Up-sampling Layers

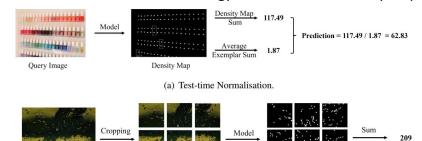
Training Strategy

Two-stage Training Scheme

- **Supervised Fine-tuning**
- Self-supervised Pre-training with MAE

Scalable Mosaicing

Mosaicing: a scalable pipeline for synthesizing training images.



(b) Type B: using one image.

(1) stands for crop and scale, and (2) stands for collage and blending.

Test-time Normalisation

Test-time Normalisation: A strategy to calibrate the density map.

Experiments

• FSC-147: A multi-class few-shot object counting dataset

(b) Test-time Cropping.

Methods	Year	Backbone	# Shots	Val		Test	
				MAE	RMSE	MAE	RMSE
RepRPN-C [11]	Arxiv2022	ConvNets	0	31.69	100.31	28.32	128.76
RCC [5]	Arxiv2022	Pre-trained ViT	0	20.39	64.62	21.64	103.47
CounTR (ours)	BMVC2022	ViT	0	17.40	70.33	14.12	108.01
FR [7]	ICCV2019	ConvNets	3	45.45	112.53	41.64	141.04
FSOD [1]	CVPR2020	ConvNets	3	36.36	115.00	32.53	140.65
P-GMN [9]	ACCV2018	ConvNets	3	60.56	137.78	62.69	159.67
GMN [9]	ACCV2018	ConvNets	3	29.66	89.81	26.52	124.57
MAML [2]	ICML2017	ConvNets	3	25.54	79.44	24.90	112.68
FamNet [12]	CVPR2021	ConvNets	3	23.75	69.07	22.08	99.54
BMNet+ [15]	CVPR2022	ConvNets	3	15.74	58.53	14.62	91.83
CounTR (ours)	BMVC2022	ViT	3	13.13	49.83	11.95	91.23

• CARPK: A class-specific car counting benchmark

Methods	Year	CARPK		
Memods	1011	MAE ↓	RMSE↓	
YOLO	CVPR2016	48.89	57.55	
Faster-RCNN	NIPS2015	47.45	57.39	
RetinaNet	ICCV2017	16.62	22.30	
IEP Count	TIP2018	51.83	-	
PDEM	CVPR2019	6.77	8.52	
GMN	CVPR2021	7.48	9.90	
FamNet	CVPR2021	18.19	33.66	
BMNet+	CVPR2022	5.76	7.83	
CounTR (ours)	BMVC2022	5.75	7.45	

Val-COCO & Test-COCO: FSC-147 subsets from COCO

Methods	Val-0	COCO	Test-COCO		
Methods	MAE↓	RMSE↓	MAE↓	RMSE↓	
Faster-RCNN	52.79	172.46	36.20	79.59	
RetinaNet	63.57	174.36	52.67	85.86	
Mask-RCNN	52.51	172.21	35.56	80.00	
FamNet	39.82	108.13	22.76	45.92	
CounTR (ours)	24.66	83.84	10.89	31.11	

Qualitative Results

Pred:43.8. GT:44

Pred:30.2, GT:30 Pred:27.0, GT:27 Pred:36.2, GT:36