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Abstract

Vision Transformers achieved outstanding performance in many computer vision
tasks. Early Vision Transformers such as ViT and DeiT adopt global self-attention,
which is computationally expensive when the number of patches is large. To improve
the efficiency, recent Vision Transformers adopt local self-attention mechanisms, where
self-attention is computed within local windows. Despite the fact that window-based
local self-attention significantly boosts efficiency, it fails to capture the relationships be-
tween distant but similar patches in the image plane. To overcome this limitation of
image-space local attention, in this paper, we further exploit the locality of patches in
the feature space. We group the patches into multiple clusters using their features, and
self-attention is computed within every cluster. Such feature-space local attention ef-
fectively captures the connections between patches across different local windows but
still relevant. We propose a Bilateral lOcal Attention vision Transformer (BOAT), which
integrates feature-space local attention with image-space local attention. We further in-
tegrate BOAT with both Swin and CSWin models, and extensive experiments on several
benchmark datasets demonstrate that our BOAT-CSWin model clearly and consistently
outperforms existing state-of-the-art CNN models and vision Transformers.

1 Introduction
Following the great success of Transformers [26] in natural language processing tasks, re-
searchers have recently proposed vision Transformers [3, 6, 9, 18, 25, 32], which have
achieved outstanding performance in many computer vision tasks, including image recog-
nition, detection, and segmentation. As early versions of vision transformers, ViT [9] and
DeiT [25] uniformly divide an image into 16× 16 patches (tokens) and apply a stack of
standard Transformer layers to a sequence of tokens formed using these patches. The orig-
inal self-attention mechanism is global, i.e., the receptive field of a patch in ViT and DeiT
covers all patches of the image, which is vital for modeling long-range interactions among
patches. On the other hand, the global nature of self-attention imposes a great challenge in
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efficiency. Specifically, the computational complexity of self-attention is quadratic in terms
of the number of patches. As the number of patches is inversely proportional to the patch
size when the size of the input image is fixed, the computational cost forces ViT and DeiT
to adopt medium-size patches, which might not be as effective as smaller patches generating
higher-resolution feature maps, especially for dense prediction tasks such as segmentation.

To maintain higher resolution feature maps while achieving high efficiency, some meth-
ods [6, 18] exploit image-space local attention. They divide an image into multiple local
windows, each of which includes a number of patches. Self-attention operations are only
performed on patches within the same local window. This is a reasonable design since a
patch is likely to be affiliated with other patches in the same local window but not highly rel-
evant to patches in other windows. Thus, pruning attention between patches from different
windows might not significantly deteriorate the performance. Meanwhile, the computational
cost of window-based self-attention is much lower than that of the original self-attention
over the entire image. Swin Transformer [18] and Twins [6] are such examples. Swin Trans-
former [18] performs self-attention within local windows. To facilitate communication be-
tween patches from different windows, Swin Transformer has two complementary window
partitioning schemes, and a window in one scheme overlaps with multiple windows in the
second scheme. Twins [6] performs self-attention within local windows and builds connec-
tions among different windows by performing (global) self-attention over feature vectors
sparsely sampled from the entire image using a regular subsampling pattern.

(a) Image-space Local Attention (b) Feature-space Local Attention

Figure 1: The image-space local attention versus
the feature-space local attention.

In this work, we rethink local atten-
tion and explore locality from a broader
perspective. Specifically, we investigate
feature-space local attention apart from
its image-space counterpart. Instead of
computing local self-attention in the im-
age space, feature-space local attention
exploits locality in the feature space. It
is based on the fact that patch feature
vectors close to each other in the fea-
ture space tend to have more influence on
each other in the computed self-attention
results. This is because the actual contribution of a feature vector to the self-attention result
at another feature vector is controlled by the similarity between these two feature vectors.
Feature-space local attention computes the self-attention result at a feature vector using its
feature-space nearest neighbors only while setting the contribution from feature vectors far-
ther away to zero. This essentially defines a piecewise similarity function, which clamps the
similarity between feature vectors far apart to zero. In comparison to the aforementioned
image-space local attention, feature-space local attention has been rarely exploited in vision
transformers. As shown in Figure 1, feature-space local attention computes attention among
relevant patches which might not be close to each other in the image plane. Thus, it is a nat-
ural compensation to image-space local attention, which might miss meaningful connections
between patches residing in different local windows.

In this paper, we propose a novel vision Transformer architecture, Bilateral lOcal At-
tention vision Transformer (BOAT), to exploit the complementarity between feature-space
and image-space local attention. The essential component in our network architecture is the
bilateral local attention block, consisting of a feature-space local attention module and an
image-space local attention module. The image-space local attention module divides an im-

Citation
Citation
{Chu, Tian, Wang, Zhang, Ren, Wei, Xia, and Shen} 2021

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Chu, Tian, Wang, Zhang, Ren, Wei, Xia, and Shen} 2021

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Chu, Tian, Wang, Zhang, Ren, Wei, Xia, and Shen} 2021



YU ET AL.: BILATERAL LOCAL ATTENTION VISION TRANSFORMER 3

age into multiple local windows as Swin [18] and CSWin [8], and self-attention is computed
within each local window. In contrast, feature-space local attention groups all the patches
into multiple clusters and self-attention is computed within each cluster. Feature-space local
attention could be implemented in a straightforward way using K-means clustering. Never-
theless, K-means clustering cannot ensure the generated clusters are evenly sized, thus im-
pedes efficient parallel implementation. In addition, sharing self-attention parameters among
unevenly sized clusters may also negatively impact the effectiveness of self-attention. To
overcome this obstacle, we propose hierarchical balanced clustering, which groups patches
into clusters of equal size.

We conduct experiments on multiple computer vision tasks, including image classifica-
tion, semantic segmentation, and object detection. Experiments on several public bench-
marks demonstrate that our BOAT clearly and consistently improves existing image-space
local attention vision Transformers, including Swin [18] and CSWin [8], on these tasks.

2 Related Work

2.1 Vision Transformers

In the past decade, CNN has achieved tremendous successes in numerous computer vision
tasks [11, 16]. The natural language processing (NLP) backbone, Transformer, has recently
attracted the attention of researchers in the computer vision community. After dividing an
image into non-overlapping patches (tokens), Vision Transformer (ViT) [9] applies Trans-
former for communications among the tokens. Without delicately devised convolution ker-
nels, ViT achieved excellent performance in image recognition in comparison to CNNs using
a huge training corpus. DeiT [25] improves data efficiency by exploring advanced training
and data augmentation strategies. Recently, many efforts have been devoted to improving
the recognition accuracy and efficiency of Vision Transformers.

To boost the recognition accuracy, T2T-ViT [36] proposes a Tokens-to-Token transforma-
tion, recursively aggregating neighboring tokens into one token for modeling local structures.
TNT [10] also investigates local structure modeling. It additionally builds an inner-level
Transformer to model the visual content within each local patch. PVT [28] uses small-scale
patches, yielding higher resolution feature maps for dense prediction. Meanwhile, PVT pro-
gressively shrinks the feature map size for computation reduction. PiT [13] also decreases
spatial dimensions through pooling and increases channel dimensions in deeper layers.

More recently, computing self-attention within local windows [6, 8, 14, 18], has achieved
a good trade-off between effectiveness and efficiency. For example, Swin [18] divides an im-
age into multiple local windows and computes self-attention among patches from the same
window. To achieve communication across local windows, Swin shifts window configura-
tions in different layers. Twins [6] also exploits local windows for enhancing efficiency.
To achieve cross-window communication, it computes additional self-attention over features
sampled from the entire image. Similarly, Shuffle Transformer [14] exploits local windows
and performs cross-window communication by shuffling patches. CSWin [8] adopts cross-
shaped windows, computing self-attention in horizontal and vertical stripes in parallel. The
aforementioned local attention models [6, 8, 14, 18] only exploit image-space locality. In
contrast, our BOAT exploits not only image-space locality but also feature-space locality.
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2.2 Efficient Transformers
High computational costs limit Transformer’s usefulness in practice. Thus, much research [24]
has recently been dedicated to improving efficiency. One popularly used strategy for speed-
ing up Transformers enforces sparse attention matrices by limiting the receptive field of each
token. Image Transformer [19] and Block-wise Transformer [20] divide a long sequence into
local buckets. In this case, the attention matrix has a block-diagonal structure. Only self-
attention within each bucket is retained, and cross-bucket attention is pruned. Transformers
based on image-space local attention, such as Swin Transformer [18], Twins [6], Shuffle
Transformer [14], and CSWin Transformer [8] also adopt buckets (windows) for boosting
efficiency. In parallel to bucket-based local attention, strided attention is another approach
for achieving sparse attention matrices. Sparse Transformer [5] and LongFormer [1] utilize
strided attention, which computes self-attention over features sampled with a sparse grid
with a stride larger than one, leading to a sparse attention matrix facilitating faster com-
putation. The global sub-sampling layer in Twins [6] and the shuffle module in Shuffle
Transformer [14] can be regarded as strided attention modules. Some recent works exploit
pure MLP-based architectures [4, 33, 34, 35] to boost efficiency.

Unlike the above mentioned image-space local attention, several methods determine the
scope of local attention in the feature space. Reformer [15] distributes tokens to buckets by
feature-space hashing functions. Routing Transformer [22] applies online K-means to cluster
tokens. Sinkhorn Sorting Network [23] learns to sort and divide an input sequence into
chunks. Our feature-space local attention module also falls into this category. As far as we
know, this paper is the first attempt to apply feature-space grouping to vision Transformers.

3 Method
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Figure 2: Architecture of Bilateral lOcal Attention Vision Transformer (BOAT).

As visualized in Figure 2, the proposed BOAT architecture consists of a patch embedding
module, and a stack of L Bilateral Local Attention blocks. Meanwhile, we exploit a hier-
archical pyramid structure. Below we only briefly introduce the patch embedding module
and the hierarchical pyramid structure and leave the details of the proposed Bilateral Local
Attention block in Section 3.1 and 3.2.
Patch embedding. For an input image with size H ×W , we follow Swin [18] and CSWin
Transformer [8], and leverage convolutional token embedding (7×7 convolution layer with
stride 4) to obtain H

4 × W
4 patch tokens, and the dimension of each token is C.

Hierarchical pyramid structure. Similar to Swin [18] and CSWin Transformer [8], we
also build a hierarchical pyramid structure. The whole architecture consists of four stages.
A convolution layer (3× 3, stride 2) is used between two adjacent stages to merge patches.
It reduces the number of tokens and doubles the number of channels. Therefore, in the i-th
stage, the feature map contains H

2(i+1) × W
2(i+1) tokens and 2i−1C channels.
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3.1 Bilateral Local Attention Block
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Figure 3: Architecture of Bilateral Local Attention (BLA) Block.

As shown in Figure 3, a Bilateral Local Attention (BLA) Block consists of an image-
space local attention (ISLA) module, a feature-space (content-based) local attention (FSLA)
module, an MLP module, and several layer normalization (LN) modules. Let us denote the
set of input tokens by Tin = {ti}N

i=1 where ti ∈ RC, C is the number of channels and N is
the number of tokens. The input tokens go through a normalization layer followed by an
image-space local attention (ISLA) module, which has a shortcut connection:

TISLA = Tin + ISLA(LN(Tin)). (1)

Image-space local attention only computes self-attention among tokens within the same lo-
cal window. We adopt existing window-based local attention modules, such as those in Swin
Transformer [18] and CSWin Transformer [8] as our ISLA module due to their excellent per-
formance. Intuitively, patches within the same local window are likely to be closely related
to each other. However, some distant patches in the image space might also reveal impor-
tant connections, such as similar contents, that could be helpful for visual understanding.
Simply throwing away such connections between distant patches in the image space might
deteriorate image recognition performance.

To bring back the useful information dropped out by image-space local attention, we
develop a feature-space local attention (FSLA) module. The output of the ISLA module,
TISLA, is fed into another normalization layer followed by a feature-space (content-based)
local attention (FSLA) module, which also has a shortcut connection:

TFSLA = TISLA +FSLA(LN(TISLA)). (2)

The FSLA module computes self-attention among tokens that are close in the feature space,
which is complementary to the ISLA module. Meanwhile, by only considering local atten-
tion in the feature space, FSLA is more efficient than the original (global) self-attention. We
will present the details of FSLA in Section 3.2. Following CSWin [8], we also add locally-
enhanced positional encoding to each feature-space local attention layer to model position.

At last, the output of the FSLA module, TFSLA, is processed by another normalization
layer and an MLP module to generate the output of a Bilateral Local Attention Block:

Tout = TFSLA +MLP(LN(TFSLA)). (3)

Following existing vision Transformers [9, 25], the MLP module consists of two fully-
connected layers. The first one increases the feature dimension from C to rC and the second
one decreases the feature dimension from rC back to C. By default, we set r = 4.

3.2 Feature-Space Local Attention
Different from image-space local attention which groups tokens according to their spatial
locations in the image plane, feature-space local attention seeks to group tokens according to

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Dong, Bao, Chen, Zhang, Yu, Yuan, Chen, and Guo} 2022

Citation
Citation
{Dong, Bao, Chen, Zhang, Yu, Yuan, Chen, and Guo} 2022

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Touvron, Cord, Douze, Massa, Sablayrolles, and J{é}gou} 2021



6 YU ET AL.: BILATERAL LOCAL ATTENTION VISION TRANSFORMER

their content, i.e., features. We could simply perform K-means clustering on token features to
achieve this goal. Nevertheless, K-means clustering cannot ensure that the generated clusters
are equally sized, which makes it difficult to have efficient parallel implementation on GPU
platforms, and may also negatively impact the overall effectiveness of self-attention.

N

N/2 N/2

N/4 N/4 N/4 N/4

N/8 N/8 N/8 N/8 N/8 N/8 N/8 N/8

balanced binary
clustering

Figure 4: Example of balanced hierar-
chical clustering. In this example, the
number of hierarchical levels is 3. There
are 23 = 8 clusters in the bottom level.

Balanced hierarchical clustering. To over-
come the imbalance problem of K-means clus-
tering, we propose a balanced hierarchical clus-
tering, which performs K levels of clustering. At
each level, it conducts balanced binary cluster-
ing, which equally splits a set of tokens into two
clusters. Let us denote the set of input tokens by
T = {ti}N

i=1. In the first level, it splits N tokens in
T into two subsets with N/2 tokens each. At the
k-th level, it splits N/2k−1 tokens assigned to the
same subset in the upper level into two smaller
subsets of N/2k size. At the end, we obtain 2K

evenly sized subsets in the final level, {Ti}2K

i=1,
and the size of each subset |Ti| is equal to N/2K .
Here, we require the condition that N is divisible by 2K , which can be easily satisfied in
existing vision Transformers. We visualize the process of balanced hierarchical clustering
in Figure 4. The core operation in balanced hierarchical clustering is our devised balanced
binary clustering, which we elaborate below.

Balanced binary clustering. Given a set of 2m tokens {ti}2m
i=1, balanced binary clustering

divides them into two groups and the size of each group is m. Similar to K-means clustering,
our balanced binary clustering relies on cluster centroids. To determine the cluster mem-
bership of each sample, K-means clustering only considers the distance between the sample
and all centroids. In contrast, our balanced binary clustering further requires that the two
resulting clusters have equal size. Let us denote the two cluster centroids as c1 and c2. For
each token ti, we compute distance ratio, ri, as a metric to determine its cluster membership:

ri =
s(ti,c1)

s(ti,c2)
, ∀i ∈ [1,2m], (4)

where s(x,y) denotes the cosine similarity between x and y. The 2m tokens {ti}2m
i=1 are sorted

in the decreasing order of their distance ratios {ri}2m
i=1. We assign the tokens in the first half of

the sorted list to the first cluster C1 and those in the second half of the sorted list to the second
cluster C2, where the size of both C1 and C2 is m. The mean of the tokens from each cluster
is used to update the cluster centroid. Similar to K-means, our balanced binary clustering
updates cluster centroids and the cluster membership of every sample in an iterative manner.
Note that cluster centroids are always computed on the fly, and are not learnable parameters.
The detailed steps of the proposed balanced binary clustering are given in Algorithm 1.

In the aforementioned balanced binary clustering, two resulting clusters have no shared
tokens, i.e., C1 ∩C2 = /0. One main drawback of the non-overlapping setting is that, a token
in the middle portion of the sorted list has some of its feature-space neighbors in one cluster
while the other neighbors in the other cluster. No matter which cluster this token is finally
assigned to, the connection between the token and part of its feature-space neighbors will be
cut off. For example, the token at the m-th location of the sorted list cannot communicate
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Algorithm 1: Balanced Binary Clustering.

Input: Tokens {ti}2m
i=1 and the iteration number, T .

Output: Two clusters, C1 and C2.

1 Initialize centroids c1 =
∑

m
i=1 ti
m , c2 =

∑
2m
i=m+1 ti

m
2 while n_iter ∈ [1,T ] do
3 for i ∈ [1,2m] do
4 ri =

s(ti,c1)
s(ti,c2)

5 [i1, · · · , i2m] = argsort([r1, · · · ,r2m])
6 C1 = {ti j}m

j=1, C2 = {ti j}2m
j=m+1

7 c1 =
∑c∈C1 c

m , c2 =
∑c∈C2 c

m

with the token at the m+1-st location during attention calculation because they are assigned
to different clusters. Overlapping balanced binary clustering overcomes this drawback by
assigning the first m + n tokens in the sorted list to the first cluster, i.e., Ĉ1 = {t ji}

m+n
i=1 ,

and the last m+ n tokens in the sorted list to the second cluster, i.e., Ĉ2 = {t ji}2m
i=m−n+1.

Thus, the two resulting clusters have 2n tokens in common, i.e., Ĉ1 ∩ Ĉ2 = {t ji}
m+n
i=m−n+1. By

default, we only adopt overlapping binary clustering at the last level of the proposed balanced
hierarchical clustering and use the non-overlapping version at the other levels. We set n = 20
in all experiments for overlapping binary clustering.

Local attention within cluster. Through the above introduced balanced hierarchical cluster-
ing, the set of tokens, T , are grouped into 2K subsets {Ti}2K

i=1, where |Ti|= N
2K . The standard

self-attention (SA) is performed within each subset:

T̂k = SA(Tk), ∀k ∈ [1,2K ]. (5)

The output, T̂ , is the union of all attended subsets:

T̂ =
⋃

k∈[1,K]

T̂k. (6)

Following the multi-head configuration in Transformer, we also devise multi-head feature-
space local attention. Note that, in our multi-head feature-space local attention, we imple-
ment multiple heads not only for computing self-attention in Eq. (5) as a standard Trans-
former, but also for performing balanced hierarchical clustering. That is, balanced hierar-
chical clustering is performed independently in each head. Thus, for a specific token, in
different heads, it might pay feature-based local attention to different tokens. This configu-
ration is more flexible than Swin [18], where multiple heads share the same local window.

4 Experiments
To demonstrate the effectiveness of our BOAT as a general vision backbone, we conduct
experiments on image classification, semantic segmentation and object detection. We build
BOAT on top of two recent local attention vision Transformers, Swin [18] and CSWin [8].
We term the BOAT built upon Swin as BOAT-Swin. In BOAT-Swin, the image-space local
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attention (ISLA) module adopts shifted window attention in Swin. In contrast, the ISLA
module in BOAT-CSWin uses cross-shape window attention in CSWin. We provide the
detailed specifications of BOAT-Swin and BOAT-CSWin in Section 1 of the supplementary
materials. Meanwhile, we present main experimental results in the following sections. More
ablation studies are presented in Section 2 of the supplementary materials.

4.1 Image Classification

Method size #para. FLOPs Top-1 Method size #para. FLOPs Top-1

ReGNetY-4G [21] 224 21M 4.0G 80.0
PVTv2-B2 [27] 224 25M 4.0G 82.0 Focal-T [31] 224 29M 4.9G 82.2
Swin-T [18] 224 29M 4.5G 81.3 BOAT-Swin-T (ours) 224 31M 5.2G 82.3
CSWin-T [8] 224 23M 4.3G 82.7 BOAT-CSWin-T (ours) 224 27M 5.1G 83.7

ReGNetY-8G [21] 224 39M 8.0 81.7 PVTv2-B4 [27] 224 62M 10.1G 83.6
Twins-B 224 56M 8.3G 83.2 Shuffle-S [14] 224 50M 8.9G 83.5
NesT-S [37], 224 38M 10.4G 83.3 Focal-S [31] 224 51M 9.1G 83.5
Swin-S [18] 224 50M 8.7G 83.0 BOAT-Swin-S (ours) 224 56M 10.1G 83.6
CSWin-S [8] 224 35M 6.9G 83.6 BOAT-CSWin-S (ours) 224 41M 8.0G 84.1

ReGNetY-16G [21] 224 84M 16.0G 82.9 ViT-B/16T [9] 384 86M 55.4G 77.9
DeiT-B [25] 224 86M 17.5G 81.8 T2T-24 [36] 224 64M 14.1G 82.3
TNT-B [10] 224 66M 14.1G 82.8 PiT-B [13] 224 74M 12.5G 82.0
PVTv2-B5 [27] 224 82M 11.8G 83.8 Twins-L 224 99M 14.8G 83.7
Shuffle-B [14] 224 88M 15.4G 84.0 NesT-B [37], 224 68M 17.9G 83.8
Focal-B [31] 224 90M 16.0G 83.8 CrossFormer-L [29] 224 92M 16.1G 84.0
Swin-B [18] 224 88M 15.4G 83.5 BOAT-Swin-B (ours) 224 98M 17.8G 83.8
CSWin-B [8] 224 78M 15.0G 84.2 BOAT-CSWin-B (ours) 224 90M 17.5G 84.7

Table 1: Comparison of image classification performance on the ImageNet-1K dataset.

We follow the same training strategies as other vision Transformers. We train our mod-
els using the training split of ImageNet-1K [7] with 224×224 input resolution and without
external data. Specifically, both Swin and BOAT-Swin are trained for 300 epochs, and both
CSWin and BOAT-CSWin are trained for 310 epochs. Table 1 compares the performance
of the proposed BOAT models with the state-of-the-art vision backbones. As shown in the
table, with a slight increase in the number of parameters and FLOPs, our BOAT-Swin model
consistently improves the vanilla Swin model under the tiny, small and base settings. Mean-
while, our BOAT-CSWin model also improves the vanilla CSWin model by a similar degree
under the tiny, small and base settings. Such improvements over Swin and CSWin models
demonstrate the effectiveness of feature-space local attention.

Comparisons with Reformer and K-means. Reformer [15] also exploits feature-space
local attention. It divides tokens into multiple groups using Locality Sensitivity Hashing
(LSH). based on sign random projections [2, 17], which is independent of specific input data,
and might be sub-optimal for different input data. K-means clustering is another choice for
dividing tokens into multiple groups for exploiting feature-space local attention. Neverthe-
less, K-means clustering cannot ensure that the generated clusters are equally sized, which
makes it difficult to have efficient parallel implementation on GPU platforms. To enforce
the clusters from K-means clustering to be equally sized, we can sort the tokens according
to their cluster index and then equally divide the sorted tokens into multiple groups, as visu-
alized in Figure 5. However, this sort-and-divide process might divide tokens from a large
cluster into multiple groups and also merge tokens from small clusters into the same group.
This would negatively impact the overall effectiveness of feature-space local attention.
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sort by
 cluster index

equally divide
K-means

Figure 5: The process of enforcing the clusters from K-means to be equally sized.

Method Reformer K-means Ours
Top-1 Accuracy 81.7 81.8 82.3

Table 2: Comparison of image classification accuracy with Reformer and K-means.

We compare the performance of BOAT-Swin-Tiny against the performance of a model
where our balanced hierarchical clustering is replaced with LSH in Reformer or K-means
clustering. We keep the other layers unchanged. As shown in Table 2, our BOAT-Swin-Tiny
clearly outperforms Reformer and K-means clustering.

The effectiveness of FSLA. To directly demonstrate the effectiveness of feature-space lo-
cal attention (FSLA), we replace all FSLA blocks in BOAT-Swin-T with image-space local
attention (ISLA) blocks. As shown in Table 3, the accuracy drops from 82.3% to 81.5%.

Model BOAT-Swin-T (with FSLA) Baseline (with ISLA)
Accuracy 82.3 81.5
Table 3: Ablation study on FSLA by replacing FSLA with ISLA.

The effectiveness of overlapping balanced hierarchical clustering. We compare the per-
formance of overlapping balanced hierarchical clustering with its non-overlapping counter-
part on the ImageNet-1K dataset. As shown in Table 4, the overlapping setting achieves
consistently higher classification accuracy in BOAT-CSwin-Tiny, Small and Base models.
Higher accuracy is expected since the overlapping setting gives rise to larger receptive fields.

Overlap BOAT-CSWin-T BOAT-CSWin-S BOAT-CSWin-B
No 83.3% 84.0% 84.5%
Yes 83.7% 84.1% 84.7%

Table 4: Comparison of image classification accuracy between overlapping balanced hierar-
chical clustering and the non-overlapping version.

4.2 Semantic Segmentation
We further investigate the effectiveness of our BOAT for semantic segmentation on the
ADE20K dataset [38]. Here, we employ UperNet [30] as the basic framework. For a fair
comparison, we follow previous work and train UperNet 160K iterations with batch size
16 using 8 GPUs. In Table 5, we compare the semantic segmentation performance of our
BOAT with other vision Transformer models including Swin [18], Twins [6], Shuffle Trans-
former [14], Focal Transformer [31], and CSWin [8]. As shown in the table, with a slight
increase in the number of parameters and FLOPs, our BOAT-Swin model consistently im-
proves the semantic segmentation performance of the Swin model under the tiny, small and
base settings. Meantime, our BOAT-CSWin also constantly obtains higher segmentation
mIoUs than the CSWin model under the tiny, small and base settings.
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Method #para.(M) FLOPs(G) mIoU(%) Method #para.(M) FLOPs(G) mIoU(%)

TwinsP-S [6] 55 919 46.2 Twins-S [6] 54 901 46.2
Shuffle-T [14] 60 949 46.6 Focal-T [31] 62 998 45.8
Swin-T [18] 60 945 44.5 BOAT-Swin-T (ours) 62 986 46.0
CSWin-T [8] 60 959 49.3 BOAT-CSWin-T (ours) 64 1012 50.5

TwinsP-B [6] 74 977 47.1 Twins-B [6] 89 1020 47.7
Shuffle-S [14] 81 1044 48.4 Focal-S [31] 85 1130 48.0
Swin-S [18] 81 1038 47.6 BOAT-Swin-S (ours) 87 1113 48.4
CSWin-S [8] 65 1027 50.0 BOAT-CSWin-S (ours) 70 1101 50.6

TwinsP-L [6] 92 1041 48.6 Twins-L [6] 133 1164 48.8
Shuffle-B [14] 121 1196 49.0 Focal-B [31] 126 1354 49.0
Swin-B [18] 121 1188 48.1 BOAT-Swin-B (ours) 131 1299 48.7
CSWin-B [8] 109 1222 50.8 BOAT-CSWin-B (ours) 121 1349 50.9

Table 5: Performance of semantic segmentation on ADE20K. FLOPs are obtained at 512×
2048 resolution. mIoU is for the single-scale setting. Testing image size is 512×512.

4.3 Object Detection
We also evaluate the proposed BOAT on object detection. Experiments are conducted on the
MS-COCO dataset using the Mask R-CNN [12] framework. Since CSWin has not released
codes for object detection, we only implement BOAT-Swin for this task. We adopt the 3×
learning rate schedule, which is the same as Swin. We compare the performance of our
BOAT-Swin and the original Swin in Table 6. The evaluation is on the MSCOCO val2017
split. Since Swin only reports the performance of Swin-Tiny and Swin-Small models when
using the Mask R-CNN framework, we also report the performance of our BOAT-Swin-Tiny
and BOAT-Swin-Small only. As shown in Table 6, with a slight increase in the number of
parameters and FLOPs, our BOAT-Swin consistently outperforms the original Swin.

Method #para.(M) FLOPs(G) mAPBox mAPMask

Swin-T 48 267 46.0 41.6
BOAT-Swin-T (ours) 50 306 47.5 42.8

Swin-S 69 359 48.5 43.3
BOAT-Swin-S (ours) 75 431 49.0 43.8

Table 6: Performance of object detection on the MS-COCO dataset. FLOPs are obtained at
800×1280 resolution.

5 Conclusion
In this paper, we have presented a new Vision Transformer architecture named Bilateral lO-
cal Attention Transformer (BOAT), which performs multi-head local self-attention in both
feature and image spaces. To compute feature-space local attention, we propose a hierarchi-
cal balanced clustering approach to group patches into multiple evenly sized clusters, and
self-attention is computed within each cluster. We have applied BOAT to multiple computer
vision tasks including image classification, semantic segmentation and object detection. Our
systematic experiments on several benchmark datasets have demonstrated that BOAT can
clearly and consistently improve the performance of existing image-space local attention
vision Transformers, including Swin [18] and CSWin [8], on these tasks.
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