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Introduction
Despite the large progress in supervised learning with neural networks, there are significant challenges in obtaining high-quality, large-scale and accurately
labelled datasets. In such a context, how to learn in the presence of noisy labels has received more and more attention. In this paper, we propose a
simple, efficient and robust framework named Sample Selection and Relabelling (SSR) to learni when both the degree and the type of noise are unknown.
At the heart of our method is a sample selection and relabelling mechanism based on a non-parametric KNN classifier (NPK) gq and a parametric
model classifier (PMC) gp, respectively, to select the clean samples and gradually relabel the noisy samples. Without bells and whistles, such as
model co-training, self-supervised pre-training and semi-supervised learning, and with robustness concerning the settings of its few hyper-parameters,
our method significantly surpasses previous methods on both CIFAR10/CIFAR100 with synthetic noise and real-world noisy datasets such as WebVision,
Clothing1M and ANIMAL-10N. Code is available at https://github.com/MrChenFeng/SSR_BMVC2022.

Insights
• Instead of relying on a warm-up stage, our

method can be trained from scratch.

• Instead of relying on semi-supervised learning
methods to utilize the whole dataset, we sim-
ply identify and relabel closet-set noisy
samples.

• Instead of complicated in-training tricks, we
simply apply supervised cross-entropy
loss only to achieve great performance.

Ablations
Sample selection & Relabelling quality

• The number of the relabeled samples is highly
related to the value of θr across different noise
settings.

• The sample relabelling avoid open-set noise
while identify and relabel closed-set noise
effectively (Over 95% relabelling accu-
racy).

• High sample selection F-score across different
noise settings (Over 0.95).

Robustness w.r.t hyperparameters
• Without sample selec-

tion (θs = 0), per-
formance degrades sig-
nificantly. Appropri-
ate θs brings great im-
provement (∼ 60% acc
in 90% symmetric
noise).

• With different θr, our
method achieve consis-
tently better results.

• Insensitive to the num-
ber of neighbors K
except for extremely
small value (<10).

Methods

Input: dataset (X = {xi}N
i=1, Y = {yi}N

i=1, L = {li}N
i=1, li = argj [yi(j) = 1]), sample selection

threshold θs, sample relabelling threshold θr, weight of feature consistency loss λ, epochs T
1 while i < T do
2 Generate relabeled dataset (X , Yr) with θr ; /* Relabelling */
3 Generate selected clean subset (Xc, Yr

c ) with θs ; /* Selection */
4 Model training.

λ = 1 by default. For brevity, we name our method as SSR when λ = 0, and SSR+ when λ ̸= 0.

Experiments

• Unlike previous methods that
try to integrate many dif-
ferent mechanisms and reg-
ularizations, we strive for a
concise, simple and robust
method.

• The proposed method does
not utilize complicated
mechanisms such as semi-
supervised learning, model
co-training and model pre-
training, and is shown with
extensive experiments and
ablation studies to be ro-
bust to the values of its few
hyper-parameters, and to
consistently and by large
surpass the state-of-the-art in
various datasets.

• Please refer to the for more re-
sults and ablations.
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