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Introduction

Despite the large progress in supervised learning with neural networks, there are significant challenges in obtaining high-quality, large-scale and accurately
labelled datasets. In such a context, how to learn in the presence of noisy labels has received more and more attention. In this paper, we propose a
simple, efficient and robust framework named Sample Selection and Relabelling (SSR)) to learni when both the degree and the type of noise are unknown.
At the heart of our method is a sample selection and relabelling mechanism based on a non-parametric KNN classifier (NPK) g, and a parametric
model classifier (PMC) g,, respectively, to select the clean samples and gradually relabel the noisy samples. Without bells and whistles, such as
model co-training, self-supervised pre-training and semi-supervised learning, and with robustness concerning the settings of its few hyper-parameters,

our method significantly surpasses previous methods on both CIFAR10/CIFAR100 with synthetic noise and real-world noisy datasets such as WebVision,
ClothinglM and ANIMAL-10N. Code is available at https://github.com/MrChenFeng/SSR__ BMVC2022.
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threshold 6., sample relabelling threshold 6,., weight of feature consistency loss A, epochs T
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. - 3 Generate selected clean subset (X., ). ) with 05 ; /* Selection */
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A = 1 by default. For brevity, we name our method as SSR when A = 0, and SSR+ when A # 0.
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