SSR: An Efficient and Robust Framework for Learning with Unknown Label Noise

Chen Feng, Georgios Tzimiropoulos, Ioannis Patras

Queen Mary University of London, School of Electronic Engineering and Computer Science, London, UK

chen.feng@qmul.ac.uk, g.tzimiropoulos@qmul.ac.uk, i.patras@qmul.ac.uk

Introduction

Despite the large progress in supervised learning with neural networks, there are significant challenges in obtaining high-quality, large-scale and accurately labelled datasets. In such a context, how to learn in the presence of noisy labels has received more and more attention. In this paper, we propose a simple, efficient and robust framework named Sample Selection and Relabelling (SSR) to learni when both the degree and the type of noise are unknown. At the heart of our method is a sample selection and relabelling mechanism based on a non-parametric KNN classifier (NPK) g_q and a parametric model classifier (PMC) g_p , respectively, to select the clean samples and gradually relabel the noisy samples. Without bells and whistles, such as model co-training, self-supervised pre-training and semi-supervised learning, and with robustness concerning the settings of its few hyper-parameters, our method significantly surpasses previous methods on both CIFAR10/CIFAR100 with synthetic noise and real-world noisy datasets such as WebVision, Clothing1M and ANIMAL-10N. Code is available at https://github.com/MrChenFeng/SSR_BMVC2022.

Insights

Methods

- Instead of relying on a warm-up stage, our method can be **trained from scratch**.
- Instead of relying on semi-supervised learning methods to utilize the whole dataset, we simply identify and relabel closet-set noisy samples.
- Instead of complicated in-training tricks, we simply apply supervised cross-entropy loss only to achieve great performance.

Ablations

Sample selection & Relabelling quality

- 1 while i < T do
- Generate relabeled dataset $(\mathcal{X}, \mathcal{Y}^r)$ with θ_r ; 2
- Generate selected clean subset $(\mathcal{X}_c, \mathcal{Y}_c^r)$ with θ_s ; 3
- Model training.

/* Relabelling */

/* Selection */

- The number of the relabeled samples is highly related to the value of θ_r across different noise settings.
- The sample relabelling avoid open-set noise while identify and relabel closed-set noise effectively (Over 95% relabelling accuracy).
- High sample selection F-score across different noise settings (**Over 0.95**).

Robustness w.r.t hyperparameters

 $\lambda = 1$ by default. For brevity, we name our method as **SSR** when $\lambda = 0$, and **SSR**+ when $\lambda \neq 0$.

Dataset	CIFAR10					CIFAR100			
Noise type	Symmetric			Assymetric	Symmetric				
Noise ratio	20%	50%	80%	90%	40%	20%	50%	80%	90%
Cross-Entropy	86.8	79.4	62.9	42.7	85.0	62.0	46.7	19.9	10.1
Co-teaching+ [36]	89.5	85.7	67.4	47.9	-	65.6	51.8	27.9	13.7
F-correction [21]	86.8	79.8	63.3	42.9	87.2	61.5	46.6	19.9	10.2
PENCIL [34]	92.4	89.1	77.5	58.9	88.5	69.4	57.5	31.1	15.3
LossModelling [2]	94.0	92.0	86.8	69.1	87.4	73.9	66.1	48.2	24.3
DivideMix* [14]	96.1	94.6	93.2	76.0	93.4	77.3	74.6	60.2	31.5
ELR+* [17]	95.8	94.8	93.3	78.7	93.0	77.6	73.6	60.8	33.4
RRL [15]	95.8	94.3	92.4	75.0	91.9	79.1	74.8	57.7	29.3
NGC [30]	95.9	94.5	91.6	80.5	90.6	79.3	75.9	62.7	29.8
AugDesc* [19]	96.3	95.4	93.8	91.9	94.6	79.5	77.2	66.4	41.2
C2D* [39]	96.4	95.3	94.4	93.6	93.5	78.7	76.4	67.8	58.7
SSR(ours)	96.3	95.7	95.2	94.6	95.1	79.0	75.9	69.5	61.8
SSR+(ours)	96.7	96.1	95.6	95.2	95.5	79.7	77.2	71.9	66.6

Experiments

- Unlike previous methods that try to integrate many different mechanisms and regularizations, we strive for a concise, simple and robust method.
- The proposed method does not utilize complicated

This work was supported by the EU H2020 AI4Media No. 951911 project.

Table 2: Evaluation on CIFAR-10 and CIFAR-100 with closed-set noise. Methods marked with an asterisk employ semi-supervised learning, model co-training or model pre-training.

CE	F-correction [21]	ELR [17]	RRL [15]	C2D* [39]	DivideMix* [14]	ELR+* [17]	AugDesc* [19]	SSR+(ours)
69.21	69.84	72.87	74.30	74.84	74.76	74.81	75.11	74.83

Table 3: Testing accuracy (%) on Clothing1M (methods with * utilized model cotraining).

Method	Noise ratio	0.3		0.6	
method	Open ratio	0.5	1	0.5	1
	Best	87.4	90.4	80.5	83.4
LON [27]	Last	80.0	87.4	55.2	78.0
D ₂ C [12]	Best	89.8	91.4	84.1	88.2
KOG [15]	Last	85.9	89.8	66.3	82.1
DivideNin [14]	Best	91.5	89.3	91.8	89.0
Dividemix [14]	Last	90.9	88.7	91.5	88.7
	Best	94.5	92.9	93.4	90.6
EDM [23]	Last	94.0	91.9	92.8	89.4
SSD (ours)	Best	96.0	95.7	93.8	93.1
SSK(ours)	Last	95.9	95.6	93.7	93.1
SSD ((auro)	Best	96.3	96.1	95.2	94.0
55K+(ours)	Last	96.2	96.0	95.2	93.9

Methods	Weby	Vision	ILSVRC2012		
Wethous	Top1	Top5	Top1	Top5	
Co-teaching [10]	63.58	85.20	61.48	84.70	
DivideMix [14]	77.32	91.64	75.20	90.84	
ELR+ [17]	77.78	91.68	70.29	89.76	
NGC [30]	79.16	91.84	74.44	91.04	
LongReMix [7]	78.92	92.32	-	-	
RRL [15]	76.3	91.5	73.3	91.2	
SSR+(ours)	80.92	92.80	75.76	91.76	

Table 5: Testing accuracy (%) on Webvision.

Cross-Entropy	SELFIE [25]	PLC [37]	NCT [<mark>6</mark>]	SSR+(ours)
79.4	81.8	83.4	84.1	88.5

Table 6: Testing accuracy on ANIMAL-10N.

mechanisms such as semisupervised learning, model co-training and model pretraining, and is shown with extensive experiments and ablation studies to be robust to the values of its few hyper-parameters, and to consistently and by large surpass the state-of-the-art in various datasets.

• Please refer to the for more results and ablations.