
CHEN ET AL: SSR: AN EFFICIENT AND ROBUST FRAMEWORK FOR LNL 1

Supplementary Material — SSR: An Efficient
and Robust Framework for Learning with
Unknown Label Noise

Chen Feng
https://sites.google.com/view/mr-chenfeng

Georgios Tzimiropoulos
https://ytzimiro.github.io/

Ioannis Patras
https://sites.google.com/view/ioannispatras

School of Electronic Engineering and
Computer Science
Queen Mary University of London
London, UK

Supplementary A: Dataset details

Synthetic noisy dataset CIFAR10 and CIFAR100 both consist of 50K images. Following
the standard practice, for CIFAR10 and CIFAR100, we evaluate our method with two types
of artificial noise: symmetric noise by randomly replacing labels of all samples using a uni-
form distribution; and asymmetric noise by randomly exchanging labels of visually similar
categories, such as Horse ↔ Deer and Dog ↔ Cat. For closed-set noise only dataset, we
test with 20%, 50%, 80% and 90% symmetric noise and 40% asymmetric noise following
DivideMix [4]. For datasets including also open-set noise, following settings in EDM [7],
we test with 30%, 60% total noise ratio and 50%, 100% open-set noise ratio on CIFAR10
dataset. The total noise ratio denotes the total proportion of noisy samples in the popula-
tion of samples while the open-set noise ratio denotes the proportion of open-set noise in
the noisy samples. The closed-set noise is generated as symmetric noise while the open-set
noise is randomly sampled from CIFAR100.

Real-world noisy dataset WebVision [5] is a large-scale dataset of 1000 classes of images
crawled from the Web. Following previous work [3, 4, 6], we compare baseline methods on
the top 50 classes from Google images Subset of WebVision. The noise ratio is estimated
to be around 20%. ANIMAL-10N [9] is a smaller and recently proposed real-world dataset
consisting of 10 classes of animals, that are manually labelled with an error rate that is
estimated to be approximately 8%. ANIMAL-10N has similar size characteristics to the
CIFAR datasets, with 50000 train images and 10000 test images. Clothing1M [10] is a
large-scale dataset of 14 classes of clothing images crawled from online shopping websites,
consisting of 1 million noisy images. The noise ratio is estimated to be around 38.5%.
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Supplementary B: Implementation details
We use a PresActResNet-18 [2] as the backbone for all CIFAR10/100 experiments follow-
ing previous works. Unlike previous methods that use specific warmup settings for CI-
FAR10/CIFAR100, we train the model from scratch with θs = 1.0 in all experiments. We
set θr = 0.8 for higher noise ratio — sym50,sym80 and sym90 noise, θr = 0.9 for remain
settings in all CIFAR experiments except in the corresponding ablation part. We train all
modules with the same SGD optimizer for 300 epochs with a momentum of 0.9 and a weight
decay of 5e-4. The initial learning rate is 0.02 and is controlled by a cosine annealing sched-
uler. The batchsize is fixed as 128.

For WebVision, we use InceptionResNetv2 following [4]. We train the network with
SGD optimizer for 150 epochs with a momentum of 0.9 and a weight decay of 1e-4. The ini-
tial learning rate is 0.01 and reduced by a factor of 10 after 50 and 100 epochs. The batchsize
is fixed as 32. For Clothing1M, we use ResNet50 following [4] with ImageNet pretrained
weights. We train the network with SGD optimizer for 150 epochs with a momentum of 0.9
and weight decay of 1e-3. The initial learning rate is 0.002 and reduced by a factor of 10 af-
ter 50 and 100 epochs. The batchsize is fixed as 32. For ANIMAL-10N, we use VGG-19 [8]
with batch-normalization following [9]. We train the network with SGD optimizer for 150
epochs with a momentum of 0.9 and weight decay of 5e-4. The initial learning rate is 0.02
and reduced by a factor of 10 after 50 and 100 epochs. The batchsize is fixed as 128. For all
real-world noisy datasets, we train the model from scratch with θs = 1, while θr is fixed as
0.95.

Following recent works, in this work, we define three augmentation strategies: original
image which we denote with ‘none’ augmentation for testing, random cropping+horizontal
flipping which we denote as ‘weak’ augmentation, and ‘strong’ augmentation the one that
further combines the augmentation policy from [1]. For Lce we use ’strong’ augmentation
with mixup interpolations [11] while for L f c, we use ’weak’ augmentation for xxx2 and ’strong’
augmentation for xxx1 in eq.(4). For mixup interpolation, following DivideMix [4], we set α,β
as 4 for beta mixture for the CIFAR10/CIFAR100 datasets, and as 0.5 for the real-world noisy
dataset.

Supplementary C: Evaluation on different choices for
sample selection
In this section, we extensively compare the performance of different sample selection mech-
anisms under different noise ratios and modes. More specifically, with the PMC gp and NPK
gq, we compare the performance of these two classifiers in two different selection modes.
Pre-defined mode means the number of noisy samples is known. That is, given a symmetric
noisy dataset with noise ratio as τ , we select the top 1− τ percent of the samples as clean
according to its loss value or prediction confidence. Automatic mode means that there is
no information about the ratio of noise. In this case, we utilize the consistency measure
c using NPK in our method and the GMM-based loss modelling for PMC. Note that here
we only considered two simple modes for sample selection and one variant in each mode
respectively. There are many different variants proposed, however, we just aim to show the
robustness of NPK over PMC here. For a fair and clear comparison, we also show results
of training with the whole dataset and clean subset as the bottom baseline and top baseline,
respectively. Note, that in order to compare only the effect of the sample selection part, we
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exclude sample relabeling, strong data augmentation and optional feature consistency loss
here.

Methods 50% sym 80% sym 40% asym 60% all(50% open) 60% all(100% open)

Automatic
PMC Last 88.41 52.19 48.88 83.91 85.24

Best 88.52 64.03 79.24 84.08 85.32

NPK(Ours) Last 88.82 68.67 88.20 85.27 84.72

Best 88.88 69.57 88.99 85.30 85.17

Pre-defined
PMC Last 87.85 65.93 84.33 85.75 86.16

Best 87.98 66.33 85.41 85.76 86.48

NPK Last 88.20 72.25 75.47 85.84 86.43

Best 88.27 72.66 83.36 86.10 86.53

Whole dataset Last 58.93 27.59 76.68 59.92 80.99

Best 80.86 61.55 85.41 79.26 84.18

Clean subset Last 92.46 87.64 93.40 90.70 90.62

Best 92.53 87.85 93.56 90.87 90.82

Table 1: Results with different sample selection mechanisms.

In table 1, we can see that the NPK-based selection achieved better performance com-
pared to PMC-based selection regardless of the mode, and that our choice can significantly
improve the baseline (Whole dataset) without knowing the noise ratio.

Supplementary D: Distance metric for feature consistency
loss
In Section 3.3, we use the cosine distance as the distance metric for feature consistency loss.
Here we also experiment with the use of the L2 distance. The results are shown in table 2,
where it can be seen that there are small differences, but that the cosine similarity is in
general better.

Training 50% sym 90% sym 40% asym 60% all (50% open-set)

SSR+(negative cosine similarity) 96.1 95.2 95.5 95.2
SSR+(L2 distance) 96.0 94.7 96.1 94.3

Table 2: SSR+ with different distance metric for feature consistency loss

Supplementary E: Computational cost analysis
In table 3, we report the running time of each step of our model on the datasets that we have
experimented with. It can be seen that the time of sample selection and relabelling is almost
negligible compared to the time of gradient propagation.
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Dataset(Size) Model training Sample selection and relabelling

Feature extraction sample selection sample relabelling

CIFAR(50K) 112s 9s 1.23s ∼ 0s
WebVision( 65K) 587s 109s 1.48s ∼ 0s
Clothing1M(32K) 575s 57s 0.79s ∼ 0s

Table 3: Computational cost analysis.

References
[1] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.

Autoaugment: Learning augmentation strategies from data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 113–123,
2019.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In European conference on computer vision, pages 630–645.
Springer, 2016.

[3] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet:
Learning data-driven curriculum for very deep neural networks on corrupted labels. In
International Conference on Machine Learning, pages 2304–2313. PMLR, 2018.

[4] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels
as semi-supervised learning. arXiv preprint arXiv:2002.07394, 2020.

[5] Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc Van Gool. Webvi-
sion database: Visual learning and understanding from web data. arXiv preprint
arXiv:1708.02862, 2017.

[6] Diego Ortego, Eric Arazo, Paul Albert, Noel E O’Connor, and Kevin McGuinness.
Multi-objective interpolation training for robustness to label noise. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6606–
6615, 2021.

[7] Ragav Sachdeva, Filipe R Cordeiro, Vasileios Belagiannis, Ian Reid, and Gustavo
Carneiro. Evidentialmix: Learning with combined open-set and closed-set noisy la-
bels. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 3607–3615, 2021.

[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[9] Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Refurbishing unclean samples
for robust deep learning. In International Conference on Machine Learning, pages
5907–5915. PMLR, 2019.

[10] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from mas-
sive noisy labeled data for image classification. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2691–2699, 2015.

[11] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.


