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Abstract

Low-light image enhancement aims to recover normal-light images from the im-
ages captured under very dim environments. While deep learning-based methods have
achieved substantial success in this field, most of them require paired training data, which
is difficult to be collected. We propose an Unsupervised Dual Contrastive Learning
Transformer (UDCL-Transformer) where the unsupervised contrastive learning is for the
first time introduced to the low light image enhancement task. From a different yet new
perspective, we explore contrastive learning with an adversarial training effort to lever-
age unpaired low-light images and normal-light images. Our proposed method leveraged
dual contrastive learning and generative adversarial networks to restore low light im-
age. Patch-wise contrastive learning maximizes the mutual information between raw and
restored images. Pixel-wise contrastive learning encourages the restored images to ap-
proach the positive samples and keep away from the negative samples in the embedding
space. Generator based on Parallel Convolution Transformer (PC-Former) is proposed
to capture the rich features of global and local context for better aggregate information.
Extensive experiments with comparisons to recent approaches further demonstrate the
superiority of our proposed method.

1 Introduction

Limited by weather factors and equipment reasons, the existence of low-light images will not
only affect the visual effect, but also negatively affect the downstream visual tasks. It affects
the reliability of the model in advanced vision tasks, further misleading machine systems,
such as autonomous driving. This makes image augmentation a meaningful low-level vision
task. Low light image enhancement is a typical ill-posed problem, and traditional Low-Light
Image Enhancement (LLIE) algorithms tend to limit the solution space with priors [2, 7, 17].
However, these images are often significantly different from normal light images and may
introduce artifacts in regions that do not satisfy the prior.

Deep learning based methods have achieved great success in the field of computer vi-
sion, and researchers have proposed a large number of LLIE methods [6, 13, 18, 20, 21,
22, 30, 33, 35, 38, 39] based on deep convolutional neural network (CNN). These methods
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can generally be divided into two categories, one is direct end-to-end image enhancement
models, which utilize network models to learn the mapping from low-light images to cor-
responding normal-light images [6, 13, 20, 35, 38], ignoring the underlying physics. The
second is the CNN method inspired by Retinex [18, 21, 22, 30, 33, 39], where CNN is used
as a first attempt to decompose the low-light image into two components, i.e., reflectance
and illuminanation, which are then post-processed [39] or directly a reflectance layer is used
as the final result [30], inheriting a similar idea compared to traditional Retinex-based meth-
ods. Due to its strong interpretability and general prior knowledge based on physical models,
methods to introduce Retinex theory into network design have received more attention, and
Retinex-based CNN methods generally outperform end-to-end methods[15]. Besides these
CNN-based methods, Zhang et al.[40] proposed the first Transformer-based LLIE method
which naturally and implicitly captures the structural relationships of different regions in an
image. However, there exists several issues: (1) Most existing methods adopt ground-truth
as positive samples to guide the training of low-light enhancement network based recon-
struction loss. The way to maximize the mutual information between input and output data
is to be found. How to use the negative and positive samples is the key to maximize the
mutual information. (2) CNN-based methods are limited by the receptive field, which are
weak in capturing the long-distance dependence relationship and have disadvantages in ex-
tracting global context information. (3) How to train Transformer method of LLIE task with
unpaired dataset is also a to-be-solved problem.
To address these issues, we propose a novel unsupervised dual contrastive learning paradigm.

To effectively train the network in an unsupervised manner, in addition to the patch-wise
contrastive learning loss, we formulate a pixel-wise contrastive learning loss to encourage
the restored images and the normal light images (positive samples) to pull together in the
representation space while pushing them away from the low light ones (negative samples).
Inspired by [19, 29], We also propose a parallel convolution Transformer (PC-Former) to
capture the rich features of global and local context. Our main contributions are as follows:

* We propose a novel unsupervised dual contrastive learning Transformer-based gener-
ative adversarial network. To the best of our knowledge, we are the first to combine a
Transformer-based generator with contrastive learning for LLIE task. We also propose
a novel multi-head self-attention with parallel convolution for information aggrega-
tion.

e We formulate an effective dual contrastive learning method to train our proposed
UDCL-Transformer. Specifically, we employ pixel-wise contrastive learning to learn
a representation that pulls the restored images and normal light images (positives) to-
gether while pushing them away from the low light ones (negatives). We also leverage
patch-wise contrastive learning to maximize the mutual information between corre-
sponding patches of the raw image and the restored image to capture the content and
detail correspondences between two image domains.

2 Related Work

2.1 Unsupervised Learning Low Light Image Enhancement

Training a deep model on paired data may result in overfitting and limited generalization
capability. To solve this issue, an unsupervised learning method named EnligthenGAN [13]
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is proposed. The EnlightenGAN adopts an attention-guided U-Net [27] as the generator and
uses the global-local discriminators to ensure the enhanced results look like realistic normal-
light images. Zhu et al. [41] propose a three-branch CNN, called RRDNet, for underexposed
images restoration. The RRDNet decomposes an input image into illumination, reflectance,
and noise via iteratively minimizing specially designed loss functions. To drive the zero-
shot learning, a combination of Retinex reconstruction loss, texture enhancement loss, and
illumination-guided noise estimation loss is proposed. Liu et al. [18] propose a Retinex
inspired unrolling method for LLIE, in which the cooperative architecture search is used to
discover lightweight prior architectures of basic blocks and non-reference losses are used to
train the network. Different from the image reconstruction-based methods [13, 18, 41], a
deep curve estimation network, Zero-DCE [6], is proposed. Zero-DCE formulates the light
enhancement as a task of image-specific curve estimation, which takes a lowlight image as
input and produces high-order curves as its output. These curves are used for pixel-wise
adjustment on the dynamic range of the input to obtain an enhanced image.

2.2 Contrastive Learning

Contrastive learning are widely used in self-supervised representation learning, where the
contrastive losses are inspired by noise contrastive estimation [8], triplet loss [11] or N-pair
loss [28]. These approaches aim to learn an embedding that brings the associated features
close to each other, while the irrelevant samples are pushed away. Existing efforts mainly
apply contrastive learning into high level vision tasks, since these tasks inherently suit for
modeling the contrast between positive and negative samples/features. Recently, several
studies have attempted to apply contrastive learning to low-level vision tasks. The design
choices of the InfoNCE loss [24], which aims to learn an embedding or an encoder that as-
sociates corresponding patches to each other, was first introduced into image translation by
[26]. Han et al. [10] proposed an unsupervised contrastive learning method using InfoNCE
loss for underwater Image restoration. Wu et al. [34] develop a contrastive regularization
term to leverage the information of both hazy and clean images for image dehazing. Tak-
ing into account two kinds of comparative learning methods, Wang et. al. [31] proposed
a dual contrastive learning method for real-world image dehazing. Different from these
works, we explore unsupervised contrastive learning from an adversarial training perspec-
tive to leverage unpaired normal-light and low-light images. Our proposed network does not
require paired data during training. By training the network in an unsupervised yet adversar-
ial manner, we can better utilize unpaired positive/ negative data to promise the enhancement
performance.

3 Method

We employ a U-shape Transformer network as the generator module. We aim to learn a
mapping to enable low light image enhancement. Unsupervised Dual Contrastive Learning
Transformer (UDCL-Transformer) has a generator G as well as a discriminator D. G enables
the mapping from low light domain to normal light domain and D ensures that the translated
images belong to the correct image domain. The first half of the generator is defined as an
encoder, while the second half is a decoder and denoted G, and Gy, respectively. The
framework of our proposed UDCL-Former is shown in Fig. 1.
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Figure 1: The network structure of UDCL-Transformer. UDCL-Transformer targets to learn
a mapping of low light image to restored image. We use a Transformer-based generator
with Parallel Convolution Transformer (PC-Former) blocks and define the first half of the
Generator G to be Generator Encoder G,,.. The last half of the Generator G is Generator
Decoder Gg... In pixel-wise contrastive learning, we denote the group of unpaired label
(normal-light image) and the restored image as the positive pair. Similarly, the negative
pair is generated by the group of low light image and the restored image. In patch-wise
contrastive learning, given the red “query” from the generated restored image, we set up an
(N + 1)-way classification problem and denote the two corresponding patches (red "positive"
) as the positive sample, while the other N patches (blue “negative” ) are the negative samples.

3.1 Generator Based on Parallel Convolution Transformer

As demonstrated in Fig. 2, we propose a Transformer with parallel convolution (PC-Former)
block of generator G in our proposed method. Long-short range multi-head self-attention
(LSR-MHSA) extracts high frequency information and low frequency information in spatial-
wise with parallel convolution. Inspired by [5, 29], which introduced convolution layer to act
as a positional embedding, we use the convolution to extract high frequency information. In
contrast to [5], we use parallel convolution for more spatial information aggregation rather
than encoding position information implicitly [12]. In contrast to [29], we use zero padding
and shifted-window to capture local relationships within the local window and enable con-
nections across windows. Recent works [25, 29] note that multi-head self attention (MHSA)
is a low-pass filtering. Although the spatial information aggregation weight of MHSA is
dynamic, the weight is always positive, making it work like smoothing. As a counterpart to
MHSA’s dynamic spatial information aggregation style, we perform static additional convo-
lution on value V. Thus the spatial information aggregation scheme is

MHSApc = Softmax(QK” /v/d + B)V + Conv(V) (1)

where MHSApc represents long-short range multi-head self-attention with parallel convo-
lution module, Conv(-) can be either DWConv [4] or a ConvBlock (convolution layer with
activation function). We still use the attention mechanism to aggregate information within
the window, but also use convolution to aggregate information in the neighborhood without
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Figure 2: Detailed structure of PC-Former.

considering window partitioning. Most importantly, PC-Former’s convolution layer is per-
formed on Value V before window partitioning, thus it provides the capability to aggregate
information between windows.

Six =W —MHSApc(LN(S;4-1)) +Six-1
Six = MLP(LN(S;4—1)) +Six—1

Siki1 =SW — MHSApc(LN(S; 1)) +Six
Six+1 = MLP(LN(8;1)) +Six

2

where S, ; and Si « denote the output features of the LSR-(S)W-MSA and the MLP module
for k — th layer depth of i — th PC-Former block , respectively.

3.2 Discriminator

The function of the discriminator D is to judge whether a given image is a real clean image
or a fake image produced by the generator, thus guiding the generator to produce more real-
istic images. We use the same Patch-GAN discriminator architecture, which passes domain
translation through five downsampling Convolutional-Normalization-LeakeyReL.U layers.
Least-Square GAN (LSGAN) loss [23] has been proved to be more effective than the vanilla
GAN loss, as it can ensure that the training process to be more stable. We adopt the LSGAN
loss to train our network. The definition of adversarial loss can be expressed as:

Laav(G) = Egx)py, [(D(G(x)) — 1)%] 3)

Lagy(D) = By [(D() = 1]+ Egn)mp, [(D(G(5)))?] )

where x refers to low-light image, y refers to the unpaired normal-light image and G(x)
represents the enhanced image.
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3.3 Pixel-Wise Contrastive Learning

Inspired by [34], we develop a novel pixel-wise contrastive learning loss to encourage the
restored images to be close to the positive samples while keeping away from the negative
ones in the embedding space. All these samples are randomly chosen from the images and
unpaired label from each other. In addition to constructing the positive and negative pairs, we
need to find a latent feature space of these pairs for contrast. Here, we employ a pre-trained
VGG-19 network to extract the feature maps of different samples. Therefore, the pixel-wise
contrastive loss can be expressed as:

%(7) - w(G)
Lo = LT o ©

where 7 and ¥ represent the group of unpaired labels (normal light images) and low light
images. y;, i = 1,2,...,n, refer to extracting the i-th hidden features from the VGG-19
network pre-trained on ImageNet. We choose the 2-nd, 7-th, 12-th, 21-th, 30-th layer of
VGG-19 network. In Pixel-wise contrastive learning, we set the weights wycorresponding to
the extracted features of the five layers as [1/32,1/16,1/8,1/4,1]. Different from percep-
tual loss [14], which measures the visual difference between the prediction and the ground
truth by leveraging multi-layer features extracted from a pre-trained deep neural network,
Pixel-wise Contrastive learning Lp;c adopt low light image (input of model) as negatives to
constrain the solution space.

3.4 Patch-Wise Contrastive Learning

Following the setting of [10, 26], we use a noisy contrastive estimation (NCE) framework to
maximize the mutual information between inputs and outputs. The idea behind contrastive
learning is to correlate two signals, i.e., the “query” and its “positive” example, in contrast
to other examples in the dataset (referred to as “negatives”).

exp(sim(v,v") /1)

v )= —
fvvivi) = log(exp(mm(V vH)/7)+ L, exp(sim(v,v; ) /7)

(©)

where sim(u,v) = u’ v/ |[u]| ||v|| denotes the cosine similarity between u and v. T denotes
a temperature parameter to scale the distance between the query and other examples, we
use 0.07 as default. We set the numbers of negatives N as 255. We use G, (consisted of
Gene and a 2-layer MLP) to extract features g; = G.,.(x). [ represents [-th selected layer
in G.,.. For the patches, after having a stack of features, each feature actually represents
one patch from the image. We denote the spatial locations in each selected layer as s €
{1,2,...,5;}, where S; is the number of spatial locations in each layer. The Patch-wised
contrastive learning loss can be described as,

L S
S
Lpac = E; Z):é G A %

In order to prevent generators from unnecessary changes and keep the structure identical,
we add an identity loss as follows.

Lias = E)[|G(y) =¥l ®)
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Datasets LOL[33] MIT[1] LSRWI[9]
Metrics PSNR SSIM PSNR SSIM PSNR SSIM
LIME[7] 15.7586 | 0.4439 | 17.5976 | 0.8179 | 154775 | 0.4627
T JIEP[2] 16.7856 | 0.5664 | 19.5241 | 0.8690 | 14.9076 | 0.5039
SRLL[17] 159872 | 0.5109 | 17.6464 | 0.7793 14.6694 | 0.5061
RetinexNet[33] 16.7741 | 0.4287 13.7474 | 0.7394 | 15.9062 | 0.4765
S KinD[39] 18.7913 | 0.7086 | 17.0935 | 0.8307 14.8176 | 0.5691
STAR[40] 19.9301 0.7896 | 21.3597 | 0.8405 159629 | 0.5881
EnGAN[13] 15.6314 | 0.5781 16.4371 | 0.7966 | 16.0677 | 0.4755
U RUASI 18] 19.1076 | 0.7168 | 20.0945 | 0.8734 | 16.3186 | 0.6814
RRDI[41] 14.2261 | 0.5316 | 18.5372 | 0.8642 | 15.8906 | 0.5276
Ours 19.6394 | 0.6901 20.8741 0.8721 16.5984 | 0.6903

Table 1: Quantitative results (PSNR and SSIM) of state-of-the-art methods and ours on the
MIT-Adobe FiveK[ 1], LOL[33] and LSRW[9] datasets. The best results is in red whereas the
second best one is in blue. T, S and U are traditional methods, supervised learning methods
and unsupervised learning methods, respectively.

Such an identity loss also encourages the mappings to preserve structure and detail between
the input and output. The total loss function can be formulated as

L = AgavLagv + ApicLpic + ApacLpac + Aid:Liar &)

where Augy, Apic, Apac, Aigr are set as 1,0.5,1,10.

4 Experiments

4.1 Dataset and Implementation Details

Inspired by [13], we collect a larger-scale unpaired training set, that covers diverse image
qualities and contents. We assemble a mixture 1645 low light and 1828 normal light images
from several datasets released in [1, 3, 9, 33], without the need to keep any pair Manual
inspection and selection are performed to remove images of medium brightness. We load all
images in 512 x 512 resolution during training. For UDCL-Transformer, the batch size is set
to 1. The ADAM optimizer is employed for optimization with learning rate 0.002. We train
our method and other baselines using a Nvidia 3090 Ti GPU. In this paper, the number of
PC-Former is 4. Embedding dimensions in PC-Former are [256, 256, 256, 256]. MLP ratios
are [2, 4, 4, 2,]. The numbers of blocks are [2, 4, 4, 2]. The number of multi heads are [4, 6,
6, 4]. The shfited window size in PC-Former block is 8. We set the total number of epochs
to 200 and adopt a linear decay strategy to adjust learning rate after 100 epochs.

4.2 Quantitative and Qualitative Comparisons

We compare our method with a rich collection of state-of-the-art (SOTA) methods for low-
light image enhancement, including LIME[7], JIEP [2], SRLL [17], Retinex-Net [33], KinD
[39], EnGAN [13], RRD [41], RUAS [18]. Also, we compared our framework with a recent
transformer structures for low-light image enhancement tasks, STAR [40]. We adopt Peak
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(e) Zero-DCE (f) RUAS (h) Ground-Truth

Figure 3: Visual comparisons on low-light image from LOL dataset [33]

Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) [32] for evaluation. In
general, a higher SSIM means more high-frequency details and structures in results. Table 1
shows the comparisons on LOL [33], MIT-Adobe FiveK (MIT) [1], LSRW [9]. Our method
surpasses all the baselines. Note that we obtain these numbers either from the respective
papers or by running the respective public code. Ours (UDCL-Transformer) yields the best
performance.

We present visual samples on LOL [33] dataset in Fig. 3 for comparing our method
with several SOTA methods. Our result shows better visual quality with higher contrast,
more precise details, color consistency, and better brightness. While the original images
in LOL dataset have apparent noise and weak illumination, our method can still produce
more realistic results. Our result shows better visual quality with higher contrast, more
precise details, color consistency, and better brightness. In Fig. 3, Zero-DCE [6] produces
color deviation. STAR [40] over-smoothes the details while DeepUPE [30] suffers over-
exposed and noise. JIEP [2] and RUAS [18] fail to enhance the brightness. Meanwhile,
we present visual samples on MIT-Adobe FiveK [1] dataset in Fig. 4 for comparing our
method with several SOTA methods. Zero-DCE [6] produces color deviation and JIEP [2]
has insufficient brightness enhancement. From these visual comparison experiments, Our
proposed method produces a visually pleasing result while avoiding over-exposure artifacts
during the processing of enhancement. Others either do not enhance dark details enough
or generate over-exposure artifacts. Our proposed method achieves a great performance in
color and brightness.
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(a) Low-Light ' (b) JIEP (¢) Zero-DCE (d) Ours
Figure 4: Visual comparisons on low-light image from MIT-Adobe FiveK dataset [33]

(a) Raw Detection (b) Enhanced Detection

Figure 5: Two examples of face detection before (Raw Detection) and after (Enhance Detec-
tion) enhanced by proposed method UDCL-Transformer. DSFD [16] is our face detector.

4.3 Ablation Study

In Table 2, we analyze the effect of different components in UDCL-Transformer and the
weights in loss functions. We also analyze the effect of dual contrastive learning (pixel-wise
and patch-wise contrastive learning).

4.4 Dark Face Detection

We investigate the performance of low-light image enhancement methods on the face detec-
tion task under low-light conditions. Specifically, we use the latest DARK FACE dataset [37]

Generator (PC-Former) Dual Contrastive Learning Baseline(Ours)
U-shape skip connection | residual block w/o Lpijc w/0 Lp,c w/0 Lpic + Lpac
18.9043 19.3917 18.8561 18.7611 18.0816
hyperparameters(Aqqy, Apic, Apacs Aidr) 19.6394
(0.1,0.5,1,10) (1,0.05,1,10) | (1,1,1,10) | (1,0.5,0.1,1) (1,0.5,1,1)
18.1762 18.5182 18.9091 18.7716 18.8162

Table 2: Ablation Analysis (PSNR) on UDCL-Transformer, loss functions and hyperparam-
eters on LOLdataset [33]. w/o represents without.
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that composes of 10,000 images taken in the dark. Since the bounding boxes of test set are
not publicly available, we perform evaluation on 1000 images of the training and validation
sets, which are chosen form 6000 images. A deep face detector [16], trained on WIDER
FACE dataset [36], is used as the baseline model. Observing the examples in Fig. 5, our
method lightens up the faces in the extremely dark regions and preserves the well-lit regions,
thus improves the performance of face detector in the dark.

5 Conclusion

We propose a novel unsupervised dual contrastive learning paradigm. To the best of our
knowledge, we are the first to combine a Transformer-based generator with contrastive learn-
ing for LLIE task. We formulate an effective dual contrastive learning method to train our
proposed UDCL-Transformer. Specifically, we employ pixel-wise contrastive learning to
learn a representation that pulls the restored images and normal light images (positives)
together while pushing them away from the low light ones (negatives). We also leverage
patch-wise contrastive learning to maximize the mutual information between corresponding
patches of the raw image and the restored image to capture the content and detail correspon-
dences between two image domains. We also propose a parallel convolution Transformer
(PC-Former) to capture the rich features of global and local context.
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