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Abstract Formulation

Low-light image enhancement aims to recover normal-light images from the 1images captured un-
der very dim environments. While deep learning-based methods have achieved substantial success
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in this field, most of them require paired training data, which 1s difficult to be collected. We propose l(v,vT,v7)
an Unsupervised Dual Contrastive Learning Transformer (UDCL-Transformer) where the unsuper- exp(sim(v, v )/T)
vised contrastive learning 1s for the first time introduced to the low light image enhancement task. = —log( )
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From a different yet new perspective, we explore contrastive learning with an adversarial train- ~

ing ettort to leverage unpaired low-light images and normal-light images. Our proposed method L S
leveraged dual contrastive learning and generative adversarial networks to restore low light 1m- Lp,c =E, >1 >1 AN ng\s)
age. Patch-wise contrastive learning maximizes the mutual information between raw and restored =1 s=1

images. Pixel-wise contrastive learning encourages the restored 1mages to approach the positive
samples and keep away from the negative samples 1n the embedding space. Generator based on
Parallel Convolution Transtormer (PC-Former) 1s proposed to capture the rich features of global
and local context for better aggregate information. Extensive experiments with comparisons to
recent approaches further demonstrate the superiority of our proposed method
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Network Architecture: PC-Former
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Experiments & Results
Quantitative Results: Ablation Results:
Datasets LOL[33] MIT][ 1] LSRWI[9] Generator (PC-Former) Dual Contrastive Learning Baseline(Ours)
Metrics PSNR SSIM PSNR SSIM PSNR SSIM U-shape skip connection | residual block w/o Lpic w/o Lp,c w/o Lp;c + Lp,c
LIME]|7] 15.7586 | 0.4439 | 17.5976 | 0.8179 | 15.4775 | 0.4627 18.9045 : 19.3917 t Malg-iﬂili . lf-%“ ladislo 19,6304
- , , yperparameters(Aqqy , Apic, Apac, Aidi :
L} ‘”‘EP[2] 67856 0.5664 19.5241 0.8690 49076 0.5039 (0.1,0:3, 1103 (1,0.05,1,10) o1, 101 19 (1.0.2:0.1. 1) (LS 1.1
SRLL[17] 159872 | 0.5109 | 17.6464 | 0.7793 | 14.6694 | 0.5061 18.1762 185182 18.9001 18.7716 18.8162
RetinexNet[33] | 16.7741 | 0.4287 | 13.7474 | 0.7394 | 15.9062 | 0.4765 Table 2: Ablation Analysis (PSNR) on UDCL-Transformer, loss functions and hyperparam-
S KinD[39] 18.7913 | 0.7086 | 17.0935 | 0.8307 | 14.8176 | 0.5691 eters on LOLdataset [33]. w/o represents without.
STAR[40] 19.9301 0.7896 | 21.3597 | 0.8405 15.9629 | 0.5881
EnGAN[13] 15.6314 | 0.5781 16.4371 0.7966 16.0677 | 0.4755 )
y |__RUAS[IS] | 19.1076 | 0.7168 | 20.0945 | 0.8734 | 163186 | 0.6814 Dark Face Detection
RRDJ[41] 14.2261 0.5316 18.5372 | 0.8642 15.8906 | 0.5276
Ours 19.6394 0.6901 20.8741 0.8721 16.5984 0.6903
Table 1: Quantitative results (PSNR and SSIM) of state-of-the-art methods and ours on the

MIT-Adobe FiveK|[1], LOL[33] and LSRW|[9] datasets. The best results 1s in red whereas the
second best one 1s in blue. T, S and U are traditional methods, supervised learning methods

and unsupervised learning methods, respectively.
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