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Abstract

The goal of image restoration is to recover a high-quality image from its degraded
input. While impressive results on various image restoration tasks have been achieved us-
ing CNNs, the convolution operation has limited its ability to utilize information outside
of its receptive field. Transformers, which use the self-attention mechanism to model
long-range dependencies of its input, have demonstrated promising results in various
high-level vision tasks. In this paper, we propose intra-inter Transformer (iiTransformer)
by explicitly modelling long-range dependencies at the pixel- and patch-levels since there
are benefits to considering both local and non-local feature correlations. In addition, we
provide a boundary artifact-free solution to support images with arbitrary sizes. We
demonstrate the potential of iiTransformer as a general purpose backbone architecture
through extensive experiments on various image restoration tasks.

1 Introduction
Image restoration aims to recover a high-quality (HQ) image from its degraded low-quality
(LQ) image. It plays a fundamental role in computer vision as its result can largely influence
subsequent high-level vision tasks in recognizing and/or understanding image data. While
great advancements in CNNs have shown impressive results on various image restoration
tasks (e.g., image denoising), the basic building blocks of these models, convolutions, have
shown limited ability to exploit contextual information outside of its local receptive field.
They often forego repetitive data available within the image itself due to its distance.

There are benefits to exploiting data at various sub-region levels of an image. That is,
utilizing data at the local level enables use of essential context information contained in the
local vicinity of a degraded pixel, while using information at the non-local1level takes ad-
vantage of the data recurrence property in natural images [16, 47]. These local and non-local
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Figure 1: iiTransformer exploits local and non-local information within an image through
intra and inter self-attention (SA) modules, resp. The intra SA module (centre) treats pixels
as tokens (red boxes at different pixel locations from the same patch) for local similarity
computation, while the inter SA module (right) treats patches as tokens (different patches in
red) for non-local correlation analysis. As in a typical Transformer, each token is projected
with appropriate projection matrices to obtain query (qi), key (ki), and value (vi). Each query
qi is compared to all keys (k j ∀ j) to obtain a scaled dot product ei j, which is normalized by
the softmax function along j. The normalized similarity values, ai j, are used as attention
weights to compute the output yi as the weighted sum of the values (i.e., yi = ∑ j ai jv j).

relationships can be captured by considering the long-range dependencies at the pixel- or
patch-level using the self-attention (SA) module of Transformers. Indeed, we refer to the
SA module that treats pixels as tokens to compute local pixelwise correlations as intra SA
and the SA module that treats patches as tokens to compute non-local patchwise correlation
as inter SA (cf. Fig. 1). To the best of our knowledge, recent works based on Transformers
for low-level vision explore either local or non-local information but not both. Furthermore,
existing inter SA module-based vision Transformer models are limited to inferencing images
whose resolution are consistent with its training. Consequently, patch boundary artifacts in-
evitably occur as shown in Fig. 2b. In this paper, we propose a unified approach that exploits
both local and non-local information using intra and inter SA modules, resp. We provide a
solution that enables an efficient switch between local and non-local SA mechanisms with-
out introducing additional parameters. Also, we propose a boundary artifact-free solution to
support images of arbitrary sizes when applying the inter SA mechanism (see Fig. 2c).

The main contributions of this paper are three-fold. First, we propose a unified approach
based on Transformers that exploits both local and non-local information for image restora-
tion. Second, we provide a boundary artifact-free solution for processing inference images
whose resolution do not match its training image. Third, we provide extensive experiments
on various image restoration tasks demonstrating state-of-the-art performance and effective-
ness of the proposed approach.

1We avoid the use of the term ‘global’ to avoid the misconception that information within the entire image must
be used, which limits its ability to operate on high-resolution images. Instead, our search range includes a small
neighbourhood around the patch of interest.
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Figure 2: To restore (a) a degraded low quality image, (b) existing inter SA module-based
vision Transformers [7] require the resolution of inference image to match those of training
(i.e., (W ×H)test = (W ×H)train). Thus, boundary artifacts along the (W ×H)train grid,
marked by red pointers, is apparent. (c) In iiTransformer, the inter-patch correlations are
masked for flexibility in inference size and outputs a boundary artifact-free high quality
image without the need for pixel overlap processing. Effects are best viewed electronically.

2 Related Works
Image Restoration. With the availability of large-scale data, learning-based methods that
learn a mapping function from low- to high-quality images have been prevalent for image
restoration and have demonstrated significant performance improvement over several tra-
ditional methods. In particular, the work of DnCNN [42] for image denoising, ARCNN
[11] for JPEG compression artifact removal, and SRCNN [12] for super-resolution (SR)
marked a turning point for image restoration, where enormous efforts were made in devel-
oping novel architecture designs using CNNs, such as residual blocks [20, 39, 42], dense
blocks [35, 45], hierarchical structures [22], channel attention [10, 31, 44], and non-local
attention [10, 26, 46] mechanisms. While these explorations further enhanced the capabili-
ties of learning-based methods, its primitive operation, convolutions, restricted the ability to
capture long-range dependencies between pixels due to its limited receptive field. Moreover,
fixing convolutional filter weights after training hindered its ability to adapt to different input
contents.

Non-local. A flurry of work exploited the strong internal data recurring tendency in nat-
ural images [16, 34, 47] and non-local self-similarity based approaches flourished in solving
various computer vision tasks. Non-local means [4] is a classical filtering algorithm that
uses patch appearance similarity and its spatial distance to compute the weighted sum at the
specified location. This non-local filtering idea later developed into CBM3D [9, 28] which
applies block matching on a group of similar patches then uses 3D filtering; it continues to
be a solid image denoising baseline even compared with deep neural networks. More re-
cently, non-local neural block [38] was introduced to incorporate non-local operations into
deep neural networks. Use of non-local neural blocks in image restoration based models, as
in NLRN [26], SAN [10], and RNAN [46], have assisted the network to make better use of
image structure cues by considering the patchwise long-range feature correlations.

Transformers. The great success of Transformers [37] in natural language process-
ing, which models long-range dependencies in the data, has attracted much attention in the
computer vision community. Starting from Vision Transformer (ViT) [13] for image clas-
sification, Transformers have been actively explored in various high-level vision tasks from
recognition [13, 27], detection [5, 27], and segmentation [27], to list a few. IPT [7] is one
of the first Transformer-based models in low-level vision; it dissects the image into patches
to be used as tokens for patchwise attention in the Transformer, like ViT. Both ViT and IPT
are limited to images of fixed resolution. Thus, directly applying patchwise attention-based
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Transformer models to low-level vision tasks inevitably results in patch boundary artifacts
for images with resolutions larger than the training image. To ameliorate this issue, SwinIR
[24] and Uformer [40] apply pixelwise local attention. However, this design choice limits
the receptive field of the model disregarding data recurring tendency in natural images.

Existing works that simultaneously consider local information using convolutions and
non-local information via non-local blocks as in RNAN [46] or MLP blocks as in MAXIM
[36] suffer from convolution’s inability to adapt to different inputs due to fixed filter weights
or necessitate a multi-stage framework for training stability. As self-attention is a core-
component of Transformers, Transformer-based models are able to dynamically change its
response based on the input as opposed to CNN-based models, demonstrating its superiority
in recent image restoration works. In this work, we propose a novel Transformer-based net-
work, iiTransformer, capable of achieving state-of-the-art results without bells and whistles
(e.g., multi-stage framework or an advanced loss function) by utilizing local and non-local
information using Transformers.

3 Methodology

As convolutional filter weights are fixed upon completion of training, the same weights are
shared over the entire image space, not adapting to different inputs. Self-attention (SA), on
the other hand, is calculated by computing the weighted sum of the features at other posi-
tions with respect to the query; thus, the response changes dynamically based on the input.
Furthermore, SA is able to capture long-range dependencies between features by directly
computing the interactions at any two positions rather than stacking multiple convolutional
layers to enlarge its receptive field. Since self-attention is a core component of Transform-
ers, the use of Transformers is a natural choice for obtaining flexible and expressive features
pertaining to the input and for modelling long-range dependencies. Long-range dependen-
cies can be applied at the pixel-level (i.e., locally) to capture essential context information
within the local neighbourhood of the degraded pixel or at the patch-level (i.e., non-locally)
to model patch recurrence in natural images. To this end, we propose iiTransformer – a
unified approach that exploits both local and non-local information using intra- and inter
multi-head self-attention modules, resp. In this section, we present the overall architecture
of iiTransformer, followed by detailed description on the key components of the framework.

3.1 Overall Framework

Given a degraded image of low quality (LQ), the goal of image restoration is to recover a high
quality (HQ) image. iiTransformer recovers the HQ image from its LQ counterpart through
the following three modules: shallow feature extraction, deep feature extraction, and image
reconstruction, as illustrated in Fig. 3a. The shallow feature extraction stage uses a 3× 3
convolution to project the input from the image space to a higher dimensional space to extract
a shallow feature. The deep feature extraction module uses local and non-local attention
mechanisms via intra-inter Transformer blocks (iiTB), detailed in the next section, to extract
high-dimensional features. Finally, the reconstruction module maps the feature vector from
a high-dimensional feature space to the image space by applying convolutional layers on the
final feature obtained from the deep feature extraction module. The reconstruction module
differs based on the task; that is, a standard 3 × 3 convolution is used for tasks that do
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Figure 3: (a) Overview of the iiTransformer architecture. (b) Each iiTB in the deep feature
extraction module is made of an aRTB and an eRTB. (c) aRTB (or eRTB) consist of a stack
of aTLs (or eTLs). (d) aTL (or eTL) is a Transformer layer with an aMSA (or an eMSA)
module. (e) The self-attention module computes pixel- or patch-wise self-attention mecha-
nism by applying the reshape operation prior to and following the attention calculation.

not require upsampling (e.g., denoising and compression artifact removal) and sub-pixel
convolution layers [33] for tasks that require upsampling (e.g., super-resolution).

3.2 Intra-Inter Transformer Block (iiTB) and its Constituents

iiTB and aRTB/eRTB. We extract deep features by processing the shallow feature through
a sequence of T intra-inter Transformer blocks (iiTBs) followed by a convolution and a
residual connection. iiTB is based on two main modules2: the intra residual Transformer
block (aRTB) and the inter residual Transformer block (eRTB), which enable extraction of
expressive features by attending to local and non-local information of the input. As shown
in Fig. 3c, aRTB and eRTB share a similar structure, which are residual blocks with multiple
intra Transformer layers (aTLs) and inter Transformer layers (eTLs) for aRTB and eRTB,
resp., followed by a convolution prior to the skip connection. The spatially invariant con-
volution enhances the translational equivariance of residual transformer blocks (aRTB and
eRTB) and the residual connection allows aggregation of features from different levels [24].

aTL and eTL. The intra and inter Transformer layers (aTL and eTL) share similar overall
structure as the Transformer encoder in ViT [13] (Fig. 3d), where the major difference lies in
the multi-head self-attention (MSA) module. Given an input feature, aTL extracts features
based on its local information by treating pixels as tokens in the intra MSA module (aMSA)
with attention focused within the patch. On the contrary, eTL extracts features based on
non-local patchwise attention in the inter MSA module (eMSA) treating patches as tokens
and computes similarities across patches. The key difference between aMSA and eMSA
lie in the shape of the projected tokens used to compute the attention matrix (i.e., queries
and keys). While both MSA modules accept flattened M ×M patches as input features of
shape HW

M2 ×M2 ×C, the set of projected tokens is different in aMSA and eMSA. The set of
projected tokens of aMSA is of shape HW

M2 ×M2 ×C, while those of eMSA is reshaped to
HW
M2 ×M2C for employment of patchwise attention (see dark grey regions in Fig. 3e). This

reshaping operation that acts as a switch between local and non-local attention is crucial for

2While we experimented with more sophisticated designs of fusing local and non-local information, we observed
marginal benefits, if there were any. We direct curious readers to supplementary material for results to the various
designs, including the use of U-Net structure within the iiTransformer. Consequently, we opt to bide with the simple
design of sequentially processing the input feature of iiTB through aRTB followed by eRTB, as in Fig. 3b.
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not introducing additional parameters. Hereon, we omit the use of the term multi-head in
MSA when possible to describe the intra and inter self-attention mechanisms with brevity.

aMSA. Suppose X ∈ RN×M2×C represents a set of flattened non-overlapping M × M
patches partitioned from a feature of shape C×H×W such that N = HW

M2 denotes the number
of partitioned patches. As in a typical Transformer, the set of queries, keys, and values for X
is computed by applying the projection matrices, W Q,W K ,WV ∈ RC×C, resp., as follows:

Q = XW Q, K = XW K , V = XWV , Q, K, V ∈ RN×M2×C. (1)

The local attention in the intra SA module is computed as

aSA(X) = attention(Q, K, V ) = softmax

(
QKP

√
C

+B
)

V, aSA(X) ∈ RN×M2×C, (2)

where P denotes the permutation of the last two axes of a tensor and B ∈ RM2×M2
is a pixel-

wise relative position bias whose values are taken from a learnable positional bias parameter
B′ ∈ R(2M−1)×(2M−1), as in [24, 27].

eMSA. The non-local attention matrix required in the inter SA module applies the reshape
operation on Q,K,V prior to and following the SA mechanism, as follows:

Q̃ = reshape(Q), K̃ = reshape(K), Ṽ = reshape(V ), Q̃, K̃, Ṽ ∈ RN×M2C (3)

eSA(X̃) = attention(Q̃, K̃, Ṽ ) = softmax

(
Q̃K̃P

√
C

+ B̃
)

Ṽ , eSA(X̃) ∈ RN×M2C (4)

eSA(X) = reshape(eSA(X̃)), eSA(X) ∈ RN×M2×C, (5)

where B̃∈RN×N is a patchwise relative position bias whose values are taken from a learnable
parameter B̃′ ∈ R(2N−1)×(2N−1). While we considered scaling the dot product in (4) as a
function of the reshaped query and key dimensions, 1√

M2C
, to avoid the vanishing gradient

problem, we observed degraded performance and used the same scaling factor as aSA in (2).
For both intra and inter self-attention modules, we employ the shifted window approach

[27] (denoted window mask in Fig. 3e) by shifting the feature
(
⌊M

2 ⌋,⌊
M
2 ⌋

)
pixels before

patch partitioning to ensure that the local and non-local relationships are modelled on a
diverse set of patches across various layers.

Supporting Arbitrary Resolutions. As vision Transformers assume input images of
fixed size (i.e., (W ×H)train = (W ×H)test )3, the computation of non-local similarity on
high-resolution images greatly impedes use in high-resolution tasks. Consequently, we add a
mask to the patchwise relative position bias in eMSA to provide flexibility toward arbitrarily
sized inference images. Since similar patches are likely to reside in clusters and very distant
patches tend to recur less [47], we mask inter-patch correlations whose distances exceed the
furthest possible distance that patches in a training image can possess, as follows:

B̃test [d(Pi,Pj)] =

{
B̃train[d(Pi,Pj)] if d(Pi,Pj)≤ dmax

train,

−∞ otherwise,
(6)

where d(Pi,Pj) denotes the distance between patches Pi and Pj, dmax
train is set to the distance

between the furthest patches in a training image, and B̃[k] is an element in B̃ indexed at k.
3We avoid applying a rescaling operation to match the resolution of the inference to the training image as the

rescaling operation will result in a blurred output, which is an extremely undesirable outcome in image restoration.
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This solution enforces values in the attention matrix corresponding to inter-patch relationship
(i.e., computations in softmax of (4)) whose distances exceed dmax

train to yield to 0 such that the
contribution of those patches are minimized during inter-patch feature extraction. This offers
a border boundary artifact free-solution during inference (see Fig. 2c), since test images need
not be cropped to match the training image size to support arbitrarily sized images.

3.3 Loss
In the task of image restoration, numerous loss functions in various combinations have been
explored, such as L1, L2, perceptual [19], adversarial [17], frequency [8], and Charbonnier
[6]. To test the effectiveness of the iiTransformer architecture, we optimize the network by
using only the L1 pixel reconstruction loss for all tasks, as follows:

L(ÎHQ, IHQ) = ∥ÎHQ − IHQ∥1, (7)

where ÎHQ is the estimated HQ output from the network (e.g., denoised, compression artifact
removed, or super-resolved image) and IHQ is the corresponding HQ groundtruth image.

4 Experiments
To test the effectiveness of iiTransformer on various image restoration tasks, we conduct ex-
periments on synthetic and real image denoising, compression artifact reduction (CAR), and
single image super-resolution (SISR). For image denoising, additive white Gaussian noise
(AWGN) with a standard deviation of σ ∈ {15,25,50} is applied to obtain synthetic noisy
images and images from existing dataset are used for real noise (i.e., SIDD [1]). JPEG com-
pression with quality factor q ∈ {10,20,30,40} is considered to obtain compressed images
for CAR. Finally, low-resolution images are super-resolved to high-resolution by scale of
s ∈ {2,3,4} in SISR. For quantitative evaluation, we report PSNR and SSIM on benchmark
datasets for each task. We provide details associated with each task in supplemental.

Training Details. We trained separate models for different image restoration tasks and
degradation levels end-to-end (i.e., no fine-tuning was employed). We cropped random
patches from the training set of DIV2K [2] for all restoration tasks, except real denoising
where we employed SIDD [1]. The networks were trained using the Adam optimizer [21]
with (β1,β2) = (0.9,0.99) and learning rate initialized to 2e-4 using the multi-step learning
rate scheme. The models were trained on eight NVIDIA Tesla P100 GPUs for up to 500K
iterations for all tasks.

Implementation Details. In iiTransformer, we used T = 2 iiTBs with 8 aTLs and 8
eTLs in aRTB and eRTB, resp. MSA modules were employed with 6 heads and the high
dimensional feature space was set to C = 180 channels. M×M = 8×8 patches were used.

4.1 Ablation Study
To study the benefits of modelling local and non-local relationships in image restoration,
we conduct an ablation study by building a Transformer consisting of (i) only intra MSAs
(called intraTransformer), (ii) only inter MSAs (called interTransformer), and (iii) both intra
and inter MSAs (iiTransformer). We ensure the same set of parameters is executed for each
studied Transformer by replacing (and not removing) the corresponding block in iiTB.
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Intra Inter iiTransformer GTLQ

30.83 / 0.9194 PSNR / SSIM30.89 / 0.919830.62 / 0.914720.37 / 0.4598

(a) AWGN Image Denoising for σ = 25
of regions cropped from 223061 [29]

Intra Inter iiTransformer GTLQ

31.32 / 0.9219 PSNR / SSIM31.43 / 0.923331.29 / 0.921128.26 / 0.9889

(b) JPEG CAR for q = 30
of regions cropped from buildings [32]

Intra Inter iiTransformer GTLQ

36.71 / 0.9929 PSNR / SSIM37.68 / 0.993735.38 / 0.9923

(c) SISR at s = 2 of regions cropped from ppt3 [41]

intra

inter

inter ≈ intra

(d) Preferred Attention Map

Figure 4: Qualitative ablation study comparing Transformers using (i) only intra MSAs, (ii)
only inter MSAs or (iii) both intra and inter MSAs (iiTransformer). The advantages of using
intra MSA is evident in top and inter MSA in bottom rows of a-c.

We provide qualitative and quantitative results of the study on all tasks with select degra-
dation levels in Fig. 4 and Tab. 1, resp. The advantages of utilizing local information can be
observed in regions with small details (top rows of Fig. 4a-c), while repetitively occurring
patterns, such as edges and corners benefit from computing non-local correlations (bottom
rows of Fig. 4a-c). Specifically, the ends of the rootop that is highly degraded in LQ of
Fig. 4b top row is recovered by the intraTransformer and iiTransformer, while the diagonal
stripes appear blurred in the output of the interTransformer. The hexagonal shape in the
bottom row of Fig. 4b is better restored in interTransformer and iiTransformer than intra-
Transformer. In Fig. 4d, we highlight regions that benefit from attending to local, non-local,
and either information in blue, red, and black, resp. Indeed, it shows that textural areas,
such as the details on a ferrule is best captured by the intra MSA module, as it is able to
capture varying textural details in other neighbourhoods. The edges along the block letters
are best captured via the inter MSA module, and homogeneous regions without any structure
are captured similarly via the intra and inter MSA modules. The ability to adaptively attend
to local and non-local regions depending on the degree of texturedness in iiTransformer is
evidenced in its ability to preserve both highly detailed small structures and crisp edges.

Quantitative results on all benchmark datasets demonstrate the robustness of iiTrans-
former in natural images across various image restoration tasks. Indeed, it is worthy to note
that the second best algorithm differs task-to-task (i.e., interTransformer is the second best
model for image denoising and CAR, while intra Transformer is the second best for SISR).
Consequently, iiTransformer is able to take advantage of both intra- and interTransformer
independent of task at hand.
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Dataset intraTransformer interTransformer iiTransformer
Kodak24 [15] 32.25 / 0.8833 32.31 / 0.8846 32.35 / 0.8848
BSDS68 [29] 30.94 / 0.8793 30.98 / 0.8799 31.01 / 0.8798
McMaster18 [43] 31.64 / 0.8515 31.67 / 0.8522 31.73 / 0.8523
Urban100 [18] 31.42 / 0.8983 31.68 / 0.9021 31.74 / 0.9021

(a) AWGN Denoising for σ = 25

Dataset intraTransformer interTransformer iiTransformer
Classic5 [14] 33.54 / 0.8938 33.56 / 0.8939 33.61 / 0.8945
LIVE1 [32] 32.73 / 0.9144 32.73 / 0.9144 32.77 / 0.9149

(b) JPEG CAR for q = 30

Dataset intraTransformer interTransformer iiTransformer
Set5 [3] 38.22 / 0.9610 38.12 / 0.9603 38.25 / 0.9611
Set14 [41] 33.97 / 0.9208 33.96 / 0.9201 34.08 / 0.9207
BSDS100 [29] 31.79 / 0.8949 31.77 / 0.8947 31.81 / 0.8954
Urban100 [18] 33.07 / 0.9362 32.93 / 0.9356 33.27 / 0.9378
Manga109 [30] 39.28 / 0.9775 39.11 / 0.9773 39.36 / 0.9781

(c) SISR for scale ×2
Table 1: Ablation experiments of using intra MSAs only (intraTransformer), inter MSAs
only (interTransformer), and both (iiTransformer). The best performing algorithm is in bold.

4.2 Comparison to State-of-the-Art
We compare iiTransformer with several image restoration methods, including a conventional
method (CBM3D [9] for denoising, SA-DCT [14] for CAR, bicubic interpolation for SISR),
a CNN-based method without attention (DnCNN [42] for denoising and CAR, SRResNet
[23] for SISR), CNN-based method with attention (RNAN [46] for denoising and CAR,
RCAN [44] and SAN [10] for SISR), and Transformer-based methods (IPT [7] and SwinIR
[24] for all tasks). For fair architectural comparison, we retrained all competing methods,
a separate model for each task on DIV2K [2], except real denoising which was trained on
SIDD [1], and used default hyperparameters indicated by the authors with the same L1 re-
construction loss as iiTransformer. No self-ensemble strategy [25] was used for inference.

We provide quantitative results in Tab. 2, which demonstrates iiTransformer surpassing
all other methods for all degradation levels in image denoising and CAR by up to 0.34 dB and
0.11 dB on PSNR, resp. iiTransformer continues to perform better than other SISR methods
in majority of the scales and datasets with a maximum gain of 0.16 dB on two tests and loss
of 0.07 dB on one compared to state-of-the-art, SwinIR [24], which uses more MSAs and
utilizes more parameters than the iiTransformer. We provide qualitative results in Fig. 5 to
further confirm the benefits of using local and non-local correlations in unison, where the
fine-details in the textures of the fabric (Fig. 5a), the chair back (Fig. 5b), and the edges
along the letters (Fig. 5c) are best preserved by the proposed iiTransformer. More qualitative
examples can be found in the supplemental material.

5 Conclusion
In this paper, we proposed iiTransformer, an effective framework based on Transformers that
combines local and non-local attention mechanisms to extract features at various sub-region
levels of the image. The local context surrounding the degraded pixel is captured using the
intra self-attention modules and the internal data repetition property in natural images is
captured by the inter self-attention module. To ensure the inter self-attention module can
flexibly process images of various resolutions, we propose to mask the patchwise relative
position bias to provide a boundary-artifact free solution. State-of-the-art results on bench-
mark datasets for various image restoration tasks demonstrate the potential of iiTransformer
as a strong general-purpose image restoration backbone architecture.
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Dataset Noise Level CBM3D [9] DnCNN [42] RNAN [46] IPT [7] SwinIR [24] iiTransformer
Kodak24 [15]

15

34.18 / 0.9143 33.85 / 0.9077 34.10 / 0.9140 34.81 / 0.9242 34.99 / 0.9264 35.09 / 0.9275
BSDS68 [29] 33.24 / 0.9187 33.03 / 0.9147 33.28 / 0.9203 33.81 / 0.9282 33.90 / 0.9296 33.96 / 0.9302
McMaster18 [43] 34.18 / 0.9143 33.58 / 0.8922 33.67 / 0.8928 34.51 / 0.9051 34.76 / 0.9082 34.85 / 0.9092
Urban100 [18] 33.52 / 0.9243 32.81 / 0.9152 32.87 / 0.9172 33.98 / 0.9291 34.29 / 0.9317 34.53 / 0.9336
Kodak24 [15]

25

31.37 / 0.8632 30.95 / 0.8486 31.67 / 0.8718 32.20 / 0.8826 32.25 / 0.8834 32.35 / 0.8848
BSDS68 [29] 30.17 / 0.8587 29.92 / 0.8485 30.56 / 0.8705 30.93 / 0.8789 30.94 / 0.8794 31.01 / 0.8798
McMaster18 [43] 30.64 / 0.8327 30.49 / 0.8261 31.01 / 0.8384 31.59 / 0.8506 31.64 / 0.8515 31.73 / 0.8523
Urban100 [18] 30.54 / 0.8855 29.55 / 0.8631 30.40 / 0.8822 31.40 / 0.8977 31.42 / 0.8984 31.74 / 0.9021
Kodak24 [15]

50

27.17 / 0.7563 24.51 / 0.7070 27.59 / 0.7670 27.93 / 0.7828 28.00 / 0.7858 28.09 / 0.7882
BSDS68 [29] 25.85 / 0.7295 23.48 / 0.6963 26.34 / 0.7477 26.59 / 0.7605 26.63 / 0.7627 26.70 / 0.7642
McMaster18 [43] 25.71 / 0.7104 22.47 / 0.6558 26.02 / 0.7157 26.39 / 0.7316 26.44 / 0.7341 26.53 / 0.7366
Urban100 [18] 25.65 / 0.7939 22.21 / 0.7135 25.96 / 0.7976 26.52 / 0.8183 26.57 / 0.8211 26.91 / 0.8314
SIDD [1] Real 34.41 / 0.8504 32.14 / 0.7502 38.80 / 0.9099 39.09 / 0.9134 39.40 / 0.9159 39.66 / 0.9189
Params Size - - 2.13 MB 54.55 MB 257.57 MB 43.70 MB 37.49 MB

(a) Additive White Gaussian Noise (AWGN) and real denoising results on benchmark datasets.
Dataset Quality SA-DCT [14] DnCNN [42] RNAN [46] IPT [7] SwinIR [24] iiTransformer
Classic5 [14] 10 28.58 / 0.7867 29.16 / 0.7924 28.91 / 0.7912 29.79 / 0.8130 30.03 / 0.8188 30.06 / 0.8196
LIVE1 [32] 27.60 / 0.7936 28.36 / 0.8067 27.97 / 0.8000 28.71 / 0.8185 28.88 / 0.8226 28.91 / 0.8232
Classic5 [14] 20 28.16 / 0.7897 31.58 / 0.8584 30.14 / 0.8334 31.87 / 0.8647 32.24 / 0.8707 32.36 / 0.8722
LIVE1 [32] 27.22 / 0.7911 30.78 / 0.8775 29.32 / 0.8505 30.96 / 0.8821 31.28 / 0.8871 31.33 / 0.8878
Classic5 [14] 30 28.88 / 0.7909 32.87 / 0.8853 31.48 / 0.8663 33.36 / 0.8915 33.51 / 0.8934 33.61 / 0.8945
LIVE1 [32] 27.90 / 0.7958 32.12 / 0.9071 30.66 / 0.8851 32.54 / 0.9122 32.71 / 0.9141 32.77 / 0.9149
Classic5 [14] 40 28.97 / 0.7958 33.84 / 0.9007 32.43 / 0.8849 34.23 / 0.9051 34.35 / 0.9066 34.44 / 0.9074
LIVE1 [32] 27.91 / 0.8026 33.14 / 0.9230 31.64 / 0.9042 33.56 / 0.9276 33.72 / 0.9290 33.78 / 0.9296
Params Size - - 2.13 MB 54.55 MB 257.56 MB 43.70 MB 37.49 MB

(b) JPEG compression artifact removal (CAR) results on benchmark datasets.
Dataset Scale Bicubic SRResNet [23] RCAN [44] SAN [10] IPT [7] SwinIR [24] iiTransformer
Set5 [3]

x2

33.65 / 0.9295 37.94 / 0.9597 38.19 / 0.9605 38.12 / 0.9603 37.80 / 0.9591 38.25 / 0.9611 38.25 / 0.9611
Set14 [41] 30.31 / 0.8687 33.63 / 0.9176 33.94 / 0.9197 33.86 / 0.9196 33.39 / 0.9157 33.92 / 0.9213 34.08 / 0.9207
BSDS100 [29] 29.57 / 0.8442 31.70 / 0.8936 31.78 / 0.8950 31.73 / 0.8944 31.71 / 0.8936 31.78 / 0.8950 31.81 / 0.8954
Urban100 [18] 26.87 / 0.8392 32.16 / 0.9280 32.99 / 0.9358 32.78 / 0.9340 31.86 / 0.9252 33.23 / 0.9371 33.27 / 0.9378
Manga109 [30] 30.76 / 0.9334 38.43 / 0.9759 39.15 / 0.9774 38.94 / 0.9769 38.25 / 0.9752 39.28 / 0.9774 39.36 / 0.9781
Set5 [3]

x3

30.37 / 0.8685 34.32 / 0.9265 34.66 / 0.9291 34.61 / 0.9286 34.14 / 0.9250 34.82 / 0.9302 34.75 / 0.9298
Set14 [41] 27.63 / 0.7743 30.29 / 0.8410 30.48 / 0.8452 30.51 / 0.8452 30.24 / 0.8393 30.73 / 0.8488 30.70 / 0.8487
BSDS100 [29] 27.24 / 0.7419 28.84 / 0.8015 28.90 / 0.8038 28.91 / 0.8037 28.84 / 0.8013 28.94 / 0.8048 28.96 / 0.8055
Urban100 [18] 24.45 / 0.7332 28.15 / 0.8516 28.75 / 0.8643 28.67 / 0.8625 27.89 / 0.8459 28.96 / 0.8682 29.12 / 0.8708
Manga109 [30] 26.91 / 0.8537 33.38 / 0.9429 34.04 / 0.9468 33.81 / 0.9458 33.16 / 0.9407 34.42 / 0.9492 34.43 / 0.9493
Set5 [3]

x4

28.42 / 0.8111 32.19 / 0.8949 32.33 / 0.8979 32.41 / 0.8977 31.96 / 0.8911 32.68 / 0.9012 32.58 / 0.9003
Set14 [41] 26.08 / 0.7029 28.56 / 0.7804 28.73 / 0.7849 28.66 / 0.7839 28.45 / 0.7769 28.85 / 0.7877 28.90 / 0.7887
BSDS100 [29] 25.99 / 0.6708 27.33 / 0.7311 27.40 / 0.7333 27.36 / 0.7325 27.33 / 0.7304 27.41 / 0.7342 27.41 / 0.7339
Urban100 [18] 23.14 / 0.6560 26.08 / 0.7843 26.56 / 0.7993 26.46 / 0.7969 25.88 / 0.7772 26.73 / 0.8050 26.75 / 0.8049
Manga109 [30] 24.86 / 0.7841 30.34 / 0.9064 30.91 / 0.9127 30.79 / 0.9115 29.96 / 0.8999 31.26 / 0.9174 31.20 / 0.9168
Params Size ×4 - 5.79 MB 59.48 MB 58.98 MB 257.70 MB 43.70 MB 37.49 MB

(c) Single Image Super-resolution (SISR) results on benchmark datasets.
Table 2: Quantitative comparison of iiTransformer to other methods. The best performing
algorithm for each dataset, degradation level, and restoration task is marked in bold.

CBM3D DnCNN RNAN IPTLQ

PSNR / SSIM32.75 / 0.8762

SwinIR
iiTransformer

(Ours)
GT

32.68 / 0.8744 32.62 / 0.8698 33.30 / 0.8843 33.60 / 0.8902 33.76 / 0.893225.19 / 0.5413

(a) AWGN Image denoising with σ = 15 of region cropped from 2 in the McMaster18 dataset [43].

SA-DCT DnCNN RNAN IPTLQ SwinIR
iiTransformer

(Ours)
GT

PSNR / SSIM26.43 / 0.7937 27.00 / 0.7921 26.50 / 0.7923 28.52 / 0.8417 29.10 / 0.8563 29.29 / 0.860430.32 / 0.8932

(b) JPEG CAR with q = 10 of region cropped from barbara in the Classic5 dataset [14].

Bicubic SRResNet RCAN IPTLR SwinIR
iiTransformer

(Ours)
GTSAN

PSNR / SSIM36.26 / 0.9775 36.44 / 0.9791 36.37 / 0.9786 35.79 / 0.9767 36.91 / 0.9799 37.73 / 0.980428.69 / 0.9252

(c) SISR x3 of region cropped from MitsutenaideDaisy in the Manga109 dataset [30].

Figure 5: Qualitative comparison of various restoration methods. All compared results were
retrained using the same dataset and data augmentation techniques for fair comparison.
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