

Soo Min Kang, Youngchan Song, Hanul Shin, and Tammy Lee
Samsung Research
https://github.com/SamsungLabs/iiTransformer

Introduction

- 1. Pixels surrounding the degraded pixel often provide useful information, and
- 2. images in general contain repetitive information
- Local and non-local relationships can be captured by considering long-range dependencies at the pixel- or patch-level using the self-attention module of Transformers

- Existing inter SA module-based ViT require resolution of training and inference images to match, resulting in either
- (i) increased computational complexity due to overlapping sliding windows, or (ii) patch boundary artifacts

Methodology

- 1. Exploiting local and non-local information for image restoration
- intra SA (aMSA): treat <u>pixels</u> as tokens to compute <u>local pixelwise</u> correlations
- inter SA (eMSA): treat <u>patches</u> as tokens to compute <u>non-local patchwise</u> correlations
- <u>shape</u> of projected tokens used to compute the attention matrix differ between aMSA and eMSA

2. Support arbitrary resolutions without boundary artifacts by masking patch-to-patch distance that exceeds furthest patch-to-patch distance used during training:

 $\tilde{B}_{test}[d(P_i, P_j)] = \begin{cases} \tilde{B}_{train}[d(P_i, P_j)] & \text{if } d(P_i, P_j) \leq d_{train}^{max} \\ -\infty & \text{otherwise} \end{cases}$

 $d(P_i, P_j)$ is the distance between patches P_i and P_j , d_{train}^{max} is the distance between furthest patches

in a training image, and $\tilde{B}[k]$ is an element in \tilde{B} indexed at k

Product (\rightarrow) , Sum (\uparrow)

Softmax (↑)

Results and Conclusion

(b) SISR for s = 4 on 'barbara' from Set14

Ablation Study

Conclusion

- iiTransformer is a framework that combines local and non-local attention mechanisms to extract features at various sub-region levels of the image
- Local context is captured using the *intra* self-attention module and the *internal data repetition* is exploited using the *inter* self-attention module
- The patchwise relative position bias is *masked* to provide a boundary artifact-free solution for images of various resolutions
- State-of-the-art performance is achieved on various restoration tasks