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1 Introduction

This supplemental material serves four purposes. First, it provides details on training and
evaluation for each task in Sec. 2. Second, it provides various ways of incorporating local
and non-local correlations within the iiTransformer architecture and its corresponding quan-
titative results in Sec. 3. Third, results across all degradation levels of the ablation study
are provided in Sec. 4. Finally, qualitative results comparing iiTransformer to other methods
across all degradation levels are provided in Sec. 5.

2 Experimental Details

The potential of iiTransformer as a general purpose backbone architecture for image restora-
tion is demonstrated through experimentation on three restoration tasks: image denoising,
compression artifact removal, and single image super-resolution. Below, we provide train-
ing and evaluation details associated with each task.

Image Denoising. Image denoising is the process of recovering a clean image from its
noisy counterpart. Various types of noise are prevalent in the real-world (e.g., camera sensor
noise, Poisson noise). For synthetic noise, we use the common assumption: additive white
Gaussian noise (AWGN) to obtain LQ-HQ pairs. AWGN is added to clean images with a
standard deviation o = {15,25,50} on patches of size 128 x 128 with a batch size of 8 for
training. For real noise, we consider noise that appear after the images are processed in-
camera that maps the sensor-dependent RGB colours to a device-independent colour space
and use data collected specifically for this task (i.e., SRGB of SIDD [1]). We report PSNR
and SSIM on the RGB channels evaluated on Kodak24 [6], BSDS68 [10], McMaster18 [16],
and Urban100 [7] for synthetic noise and SIDD [1] for real noise.
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CAR. Compression artifact reduction (CAR) is the process of removing artifacts caused
by compression algorithms, such as blocking, ringing, and blurry artifacts. Among several
compression algorithms for storage and/or bandwidth reduction (e.g, WebP, MPEG2), we
consider one of the most widely used image compression algorithms, JPEG, on four quality
factors: ¢ = {10,20,30,40}, where the compressed LQ images are obtained using the MAT-
LAB JPEG encoder. We use patches of size 128 x 128 with a batch size of 32 for training.
Following the protocol of other CAR methods, we report PSNR and SSIM on the Y channel
for two benchmark datasets: Classic5 [5] and LIVE1 [12].

SISR. Single image super-resolution (SISR) aims to reconstruct a natural and sharp de-
tailed high-resolution image given a low-resolution input. Following the tradition of SISR,
we report PSNR and SSIM on the Y channel of the YCbCr space for five benchmark datasets:
Set5 [2], Set14 [15], BSDS100 [10], Urban100 [7], and Mangal09 [11]. We consider three
scales: s = {2,3,4}, where the low-resolution images are obtained by the MATLAB bicubic
interpolation method. We used patches of size (LQ,HQ) = (64 x 64, 564 x s64), where s
denotes the scale, and a batch size of 32.

3 Combining Local and Non-local Information

Local and non-local correlations can be combined in various ways. In this section, we ex-
plore the various design choices by replacing each component of the framework described in
Sec. 3 and Fig. 3 of the main manuscript, which we refer to as the baseline. The hyperparam-
eters for each design choice was chosen to ensure that the total number of MSAs remained
consistent across the experiments. For quantitative evaluation of each fusion method, we
provide PSNR / SSIM on SISR for scale s =2 in Tab. 1.

(a) The baseline 1iTB structure sequentially processes the input feature through aRTB
followed by eRTB (see Fig. 3b of main). Since features from aRTB are generated by consid-
ering internal correlations within a patch and eRTB is based on correlations across patches,
we tested the importance of sequential order by altering the order of aRTB and eRTB in
iiTB, as in Fig. la. That is, there could be benefits of seeking structurally similar patches
through eRTB, then finetuning the details through aRTB. However, our quantitative evalu-
ation on SISR at scale s = 2 indicated similar or slight degradation in performance across
benchmark datasets. This could imply that there are greater benefits of processing features
based on its neighbouring pixels then seeking non-local similarities than vice versa.

(b) The baseline residual Transformer blocks in Fig. 3¢ of main are designed to consecu-
tively apply intra (or inter) correlations using aTLs (or eTLs) to obtain deep features based on
local (or non-local) information. We observed the effectiveness of aMSA and eMSA inter-
action frequency by interweaving aTLs and eTLs to build the residual Transformer block as
shown in Fig. 1b. Our quantitative evaluation indicated deteriorating performance compared
to the baseline signifying the necessity to apply multiple aMSAs (or eMSAs) consecutively
for meaningful feature extraction.

(c, d) The baseline Transformer layer and iiTransformer block correlates local and non-
local relationship of features in a sequential manner. That is, the baseline Transformer layer
in Fig. 3d of the main manuscript considers either aMSA or eMSA to build aTL or eTL,
resp., but not simultaneously. We considered processing the features through aMSA and
eMSA in parallel within a Transformer layer by concatenating their outputs as in Fig. lc.
Alternatively, rather than sequentially processing aRTB followed by eRTB as in Fig. 3b of
main, we considered concatenating the output features of aRTB and eRTB within a single
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Figure 1: Alternative ways of combining local and non-local information.

Architecture Set5 [2] Set14 [15] BSDS100 [10] | Urban100 [7] | Mangal09 [11]
Baseline 38.25/0.9611 | 34.08/0.9207 | 31.81/0.8954 | 33.27/0.9378 | 39.36/0.9781
(a) Inter-to-Intra iiTB 38.25/0.9611 | 34.07/0.9214 | 31.81/0.8955 | 33.23/0.9379 | 39.32/0.9780
(b) Intertweave iiTB 38.24/0.9610 | 33.90/0.9207 | 31.83/0.8957 | 33.25/0.9377 | 39.34/0.9780
(c) Parallel iiTL 38.20/0.9609 | 33.89/0.9199 | 31.80/0.8953 | 33.09/0.9364 | 39.24/0.9775
(d) Parallel iiTB 38.19/0.9608 | 33.93/0.9210 | 31.78/0.8949 | 32.99/0.9356 | 39.22/0.9776
(e) Cross Attention in iiTB | 38.22/0.9609 | 33.97/0.9206 | 31.79/0.8951 | 33.09/0.9362 | 39.12/0.9773
(f) U-Net in iiTransformer | 38.24/0.9609 | 34.05/0.9211 | 31.81/0.8954 | 33.28/0.9379 | 39.35/0.9780

Table 1: Quantitative evaluation for SISR at scale x2 comparing various local and non-local
information fusion methods. The best performing method is marked in bold.

iiTB as in Fig. 1d. We observed no quantitative benefits in parallel processing over sequential
processing.

(e) We explored selective gating via cross-attention, as in [14], by using the output of
aRTB as an attention map of eRTB and vice versa, as shown in Fig. le, such that the features
from aRTB and eRTB have a more direct interaction with one another. However, quantita-
tive analysis showed no benefit in applying such cross-attention approach compared to the
baseline framework proposed in Sec. 3 of the main paper.

(f) We adapted the U-Net structure that is widely used in image restoration within iiTrans-
former by applying down/upscaling operations on the intermediate features output by iiTBs.
Downscaling processes the data in a fine-to-coarse manner to consider larger scope of the
image, while upscaling processes the data in a coarse-to-fine manner to enable generation of
details at the finer scale. Correspondingly, we spatially downscaled the intermediate features
using the unshuffle operation and used the linear layer to reduce the number of channels;
and conversely upscaled the features spatially using the shuffle operation [13] and increased
the number of channels using a linear layer (see Fig. 1f). Quantitative analysis showed very
little benefits in applying the multi-scale approach compared to the baseline framework.

While we experimented with several sophisticated designs of local and non-local infor-
mation fusion, we observed marginal benefits, if there were any. Indeed, the sequential
process of aRTB followed by eRTB in iiTB presented in the main manuscript yielded the
most optimal results.


Citation
Citation
{Bevilacqua, Roumy, Guillemot, and Morel} 2012

Citation
Citation
{Zeyde, Elad, and Protter} 2010

Citation
Citation
{Martin, Fowlkes, Tal, and Malik} 2001

Citation
Citation
{Huang, Singh, and Ahuja} 2015

Citation
Citation
{Matsui, Ito, Aramaki, Fujimoto, Ogawa, Yamasaki, and Aizawa} 2017

Citation
Citation
{Tu, Talebi, Zhang, Yang, Milanfar, Bovik, and Li} 2022

Citation
Citation
{Shi, Caballero, Huszar, Totz, Aitken, Bishop, Rueckert, and Wang} 2016


4 KANG, SONG, SHIN, LEE: ITRANSFORMER FOR IMAGE RESTORATION

4 Additional Ablation Results

We studied the effects of employing local and/or non-local information on select degradation
levels in Sec. 4.1 of the main manuscript. Here, we provide ablation results on all degrada-
tion levels in Tab. 2. Note that intraTransformer shares a very similar structure as SwinIR
[9] with the main difference in the hyperparameters (e.g., number of intra MSAs) along
with the specifics on the training strategy (e.g., dataset); hence, there are slight deviations
in PSNR and SSIM values presented in Tab. 2 of the supplemental and Tab. 2 of the main
manuscript. While it is generally favourable to use both local and non-local information in
unison as done in iiTransformer, some datasets at specific tasks and degradation levels in-
dicate otherwise. For example, Set5 [2] and Setl4 [15] for SISR display slight preference
in intraTransformer (Transformer containing only of intra MSAs) over iiTransformer and
a few datasets in AWGN denoising at ¢ = 50 indicate similar performance between inter-
Transformer (Transformer containing only of inter MSAs) and iiTransformer. Exploration
on degradation-specific gating mechanism that selects the more ideal sub-region level for
long-range computation (i.e., pixel or patch-level) is a promising direction for future work.

Dataset Noise Level | intraTransformer | interTransformer iiTransformer
Kodak24 [6] 34.99/0.9264 35.04/0.9271 35.09/0.9275
BSDS68 [10] 15 33.90/0.9296 33.94/0.9300 33.96/0.9302
McMaster18 [16] 34.76 /0.9081 34.78 /0.9084 34.85/0.9092
Urban100 [7] 34.29/0.9317 34.48/0.9334 34.53/0.9336
Kodak24 [6] 32.25/0.8833 32.31/0.8846 32.35/0.8848
BSDS68 [10] 25 30.94/0.8793 30.98 /0.8799 31.01/0.8798
McMaster18 [16] 31.64/0.8515 31.67/0.8522 31.73/0.8523
Urban100 [7] 31.42/0.8983 31.68 /0.9021 31.74/0.9021
Kodak24 [6] 28.01/0.7859 28.09/0.7896 28.09/0.7882
BSDS68 [10] 50 26.64/0.7628 26.70 / 0.7660 26.70/0.7642
McMaster18 [16] N 26.45/0.7343 26.51/0.7376 26.53/0.7366
Urban100 [7] 26.59/0.8212 26.88/0.8330 26.91/0.8314
(a) AWGN image denoising for noise levels ¢ € {15,25,50}
Dataset Quality intraTransformer | interTransformer iiTransformer
Classic5 [5] 10 30.03/0.8189 30.02/0.8189 30.06 / 0.8196
LIVEI [12] 28.87/0.8223 28.87/0.8228 28.91/0.8232
Classic5 [5] 20 32.27/0.8711 32.28/0.8712 32.36/0.8722
LIVEI [12] 31.29/0.8871 31.27/0.8871 31.33/0.8878
Classic5 [5] 30 33.54/0.8938 33.56/0.8939 33.61/0.8945
LIVEL [12] 32.73/0.9144 32.73/0.9144 32.77/0.9149
Classic5 [5] 40 34.37/0.9068 34.37/0.9068 34.44/0.9074
LIVEI [12] 33.72/0.9291 33.72/0.9292 33.78/0.9296
(b) JPEG CAR for qualities g € {10,20,30,40}
Dataset Scale intraTransformer | interTransformer iiTransformer
Set5 [2] 38.22/0.9610 38.12/0.9603 38.25/0.9611
Setl4 [15] 33.97/0.9208 33.96/0.9201 34.08/0.9207
BSDS100 [10] 2 31.79/0.8949 31.77/0.8947 31.81/0.8954
Urban100 [7] 33.07/0.9362 32.93/0.9356 33.27/0.9378
Mangal09 [11] 39.28/0.9775 39.11/0.9773 39.36/0.9781
Set5 [2] 34.7870.9299 34.59/0.9285 34.751/0.9298
Set14 [15] 30.69 / 0.8489 30.54/0.8455 30.70 / 0.8487
BSDS100 [10] 3 28.95/0.8046 28.89/0.8034 28.96 / 0.8055
Urban100 [7] 28.97/0.8677 28.71/0.8627 29.12/0.8708
Mangal09 [11] 34.34/0.9489 33.96 /0.9465 34.43/0.9493
Set5 [2] 32.61/0.9007 32.45/0.8976 32.58/0.9003
Set14 [15] 28.80/0.7869 28.67/0.7840 28.90/0.7887
BSDS100 [10] 4 27.37/0.7331 27.36/0.7324 27.41/0.7339
Urban100 [7] 26.64/0.8023 26.48/0.7972 26.75/0.8049
Mangal09 [11] 31.13/0.9166 30.87/0.9129 31.20/0.9168

(c) SISR for scales s = {2,3,4}
Table 2: Full ablation experimental results on using intra MSAs only (intraTransformer),

inter MSAs only (interTransformer), and both (iiTransformer) for all considered degradation
level across tasks. The best performing algorithm is in bold.
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5 Additional Qualitative Results

We provide comparative qualitative results on al/l degradation levels for AWGN image de-
noising in Fig. 2, JPEG CAR in Fig. 3, and SISR in Fig. 4. It can be seen that iiTransformer
is able to restore distinct and sharp images from its degraded LQ inputs. It is particularly
interesting to note that the stripes created by the book stack in Fig. 4c are restored similarly
between local-based methods (i.e., bicubic, SRResNet [8], RCAN [17], and SwinIR [9]) in
the northwest-southeast direction, while methods with a non-local correlation mechanism
(i.e., SAN [4], IPT [3], and iiTransformer) super-resolve the book stack in the southwest-
northeast direction.

LQ CBM3D  DnCNN RNAN swinir  iiTransformer

.... | .

(a) AWGN Den01s1ng for s = 15 on img_044 from Urban100 [7]
CBM3D DnCNN RNAN SwinlR ||Transformer

W/

20.34/0.2505 32.53/0.8450 31.87/0.8286 32.61/0.8495 33.37/0.8654 33.36/0.8655 33.60/0.8700 PSNR/SSIM
(b) AWGN Denoising for s = 25 on kodim04 from Kodak24 [6]

LQ CBM3D SwinlR iiTrar;)sIgrmer oT

DnCNN RNAN IPT

| 1470/0.1340 29.35/0.8648 24.97/0.7862 30.08/0.8790 30.69/0.8947 30.73/0.8974 31.25/0.9082 PSNR/SSIM
(c) AWGN Denoising for s = 50 on 270088 from BSDS68 [10]

Figure 2: Qualitative comparison of AWGN denoising on various state-of-the-art methods.
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SA-DCT DNnCNN RNAN SwinIR ||Transformer

§ 29.40/0.9082 26.12/0.7675 26.75/0.7846 26.44/0.7767 27.18/0.8018 27.41/0.8083 27.53/0.8103 PSNR/SSIM

(a) JPEG CAR for g = 10 on paintedhouse from LIVE1 [12]
LQ SA-DCT DnCNN RNAN IPT SwinIR iiTransformer GT

| (Vg " il g il " i |
31.07/08103 27.82/0.8453 31.54/09192 29.77/0.8838 31.74/0.9253 32.31/0.9327 32.41/0.9348 PSNR/SSIM
(b) JPEG CAR for g = 20 on carnivaldolls from LIVE1 [12]

LQ SA-DCT DnCNN RNAN IPT SwinIR iiTransformer GT
Ours,

. — —
29.81/0.9348 26.93/0.8361 31.63/0.9269 20.81/0.9027 32.04/0.9316 32.26/0.9339 32.38/0.9354 PSNR/SSIM

(c) JPEG CAR for g = 30 on churchandcapitol from LIVEI1 [12]
LQ SA-DCT DnCNN RNAN SwinIR iiTransformer

Ours;

B 3081/09354 27.85/08176 3321/09359 3189/0.9197 3369/09413 3384/09427 33.92/0.9437 PSNR/SSIM
(d) JPEG CAR for g = 40 on manfishing from LIVE1 [12]

Figure 3: Qualitative comparison of JPEG CAR on various state-of-the-art methods.

Bicubic SRResNet

2213/07497 26.08/08046 2707108105 27.21/0.9018 27.02/09003 27.61/09045 28.65/09192 PSNR/SSIM
(a) SISR for s = 2 on img_024 from Urban100 [7]
Bicubic SRResNet RCAN SAN IPT SwinIR

A\Y ’ ‘.\\\v'\
f } ni\ﬂn‘ r) W
b A\ WY B2 Y
\\ \\n“!\\} x ‘,1\\ ;
| !A AT &)

26.54/0.8587 31 69/0 9565 33 14/0.9669 33.11/0.9666 32.21/0.9589 33. 48/0 9684 33 99/0.9709 PSNR/SSIM

iiTransformer
(Ours)
D 1\

.t
.

I

(b) SISR for s = 3 on YumeiroCooking from Mangal09 [11]
LR Bicubic SRResNet RCAN SAN IPT SwinIR iiTransformer GT

25.15/0.6851 25.96/0.7462 26.10/0.7537 26.06/0.7537 26.35/0.7518 26.05/0.7527 26.42/0.7604 PSNR/SSIM
(c) SISR for s = 4 on barbara from Set14 [15]

Figure 4: Qualitative comparison of SISR on various state-of-the-art methods.
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