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Abstract
Nowadays, the need for user editing in a 3D scene has rapidly increased due to the

development of AR and VR technology. However, the existing 3D scene completion task
(and datasets) cannot suit the need because the missing regions in scenes are generated by
the sensor limitation or object occlusion. Thus, we present a novel task named free-form
3D scene inpainting. Unlike scenes in previous 3D completion datasets preserving most
of the main structures and hints of detailed shapes around missing regions, the proposed
inpainting dataset, FF-Matterport, contains large and diverse missing regions formed by
our free-form 3D mask generation algorithm that can mimic human drawing trajecto-
ries in 3D space. Moreover, prior 3D completion methods cannot perform well on this
challenging yet practical task, simply interpolating nearby geometry and color context.
Thus, a tailored dual-stream GAN method is proposed. First, our dual-stream generator,
fusing both geometry and color information, produces distinct semantic boundaries and
solves the interpolation issue. To further enhance the details, our lightweight dual-stream
discriminator regularizes the geometry and color edges of the predicted scenes to be re-
alistic and sharp. We conducted experiments with the proposed FF-Matterport dataset.
Qualitative and quantitative results validate the superiority of our approach over existing
scene completion methods and the efficacy of all proposed components.

1 Introduction
In recent years, Augmented Reality (AR) and Virtual Reality (VR) have become popular in
our daily life, such as VR gaming, virtual tours, and AR meeting software. To form realistic
3D scenes in these applications, reconstructing scenes from multiple sensed RGB-D images
is a widely-used and cost-effective approach. However, users often want to further edit the
reconstructed 3D scenes to meet their needs. Take, as an example, removing unwanted ob-
jects existing in the real world. Therefore, there is still a strong need for 3D post-processing.

In this work, we introduce this application as the 3D scene inpainting task. Specifically,
given a 3D scene with several manually specified 3D masks, a 3D inpainting model should
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Figure 1: Left: We propose a novel 3D scene inpainting task with the first free-form 3D
scene dataset, FF-Matterport, which imitates user drawing masks in 3D space. Our proposed
model takes the incomplete scene as input and recovers the missing parts with high-quality
and realistic results. Right: Compared with the prior scene completion dataset generated
by incomplete observations and preserving main structures and hints of missing parts, our
dataset contains challenging yet practical missing regions for the 3D scene inpainting task.

fill these regions with proper contents, including both geometry and color. Although 3D
completion methods [8, 9, 10, 45] also aim to complete missing regions in 3D space, they
cannot meet the needs of the 3D inpainting application for the following reasons:

Insufficient Evaluation: The existing 3D scene completion datasets [9, 10] are unsuit-
able for the inpainting task because they (1) lack the masks that specify the missing regions
and (2) form the missing regions only by sensor limitation or object occlusion. About (1),
regions with a 0-value could be either missing parts that need to be repaired or an empty
space without objects due to the sparseness property of 3D space. Without the informative
masks of missing regions, SOTA methods in 3D completion thus change the shape of com-
pleted parts or leave the incomplete regions with small holes or artifacts (Fig. 4). Regarding
(2), the physical properties of missing regions in 3D inpainting tasks and existing 3D scene
completion datasets [9, 10] differ. To be specific, incomplete areas in the existing completion
datasets are due to inherent sensor limitation or object occlusion. They are usually regular
and strongly correlated to object occlusion or specific camera view (Fig. 1). In contrast, the
missing regions in 3D inpainting tasks are irregularly shaped and could randomly occur any-
where in a scene. To effectively validate the methods in the 3D inpainting task, we propose
a novel Free-Form Matterport3D (FF-Matterport) dataset tailored for this task. Free-form
masks imitate the diverse human drawing trajectories in real-case (Sec. 3.1).

Poor Geometry and Color Reconstruction: As aforementioned, previous methods lack
the ability to recover the missing regions well in 3D inpainting tasks. First, they cannot attend
to the missing parts due to the lacking of mask information. To tackle this, we leverage
the mask information via modifying the gated convolution module [53] to guide our model
to focus on the crucial area. Second, the SOTA method [10] recovers missing areas with a
single-stream two-stage generator, which generates geometry structure (first-stage) and color
(second-stage) sequentially. Since the unstable geometry results learned in the first stage are
without the help of semantic features from color, it may cause the error propagation issue
resulting in poor inpainting results. Observing this, we introduce the first 3D dual-stream
generator (Fig. 2 (a)) to collaboratively generate both geometry and color in missing regions
(Sec. 3.2). By considering the information of two modalities simultaneously, our dual-stream
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generator produces more realistic object structures than the single-stream generator.
Crude Details: As the 3D scene inpainting task is much more challenging, prior ap-

proaches show the further shortcoming, i.e., producing crude details of restoration. In brief,
prior colored 3D completion work [10] leveraged a color discriminator to make the ren-
dered images of the generated scene similar to the real scene with adversarial loss. However,
this color adversarial discriminator still results in blurred and distorted boundaries when
recovering large damaging regions with structural contents, such as picture frames or fur-
niture edges. To enhance the sharpness and structure of boundaries, we introduce an extra
edge stream discriminator apart from the color adversarial discriminator. Particularly, we
randomly project the inpainted 3D scene to multiple 2D images and then simultaneously
constrain its color texture along with the predicted edge maps using our dual-stream dis-
criminator (Fig. 2 (b) and Sec. 3.3). With additional regularizations on the edges of global
structures, we find that our geometry and color generators learn to collaborate and generate
less blurry and well-structured boundaries.

We validate our dual-stream GAN and previous 3D scene completion methods on the
proposed FF-Matterport dataset. Our method demonstrates the superiority in six different
metrics. Besides, the impressive visualization results also illustrate the effectiveness of our
method. To sum up, this work presents the following main novelties and contributions:

• We propose a novel 3D scene inpainting task with the first free-form 3D scene dataset,
FF-Matterport, which contains diverse free-form masks generated with our designed
algorithm imitating human drawing trajectories.

• We introduce the first 3D gated dual-stream (geometry and color) generator to jointly
consider the geometry and color context of missing regions and generate high-quality
contents with semantic-constrained structures.

• We introduce an edge and color dual-stream discriminator guiding the generator to
produce clear and detailed geometry and color boundaries.

2 Related Work

2.1 3D Completion
In the field of 3D vision, object completion is a fundamental and long-standing problem.
Some took single or multi images to reconstruct or complete 3D objects [5, 16, 34, 42,
46, 51]. Others utilized depth or RGB-D frames collected by commodity depth sensors to
reconstruct 3D objects [49, 50]. Still, others aimed to complete a 3D object by various 3D
representations, such as 3D point cloud scan [18, 23, 43, 52, 54, 55], sign distance fields
(SDF) [7, 39], or mesh surface [26, 27]. Nonetheless, the above methods are limited to 3D
objects rather than a complex 3D scene with several items.

To complete a complicated 3D scene, some recent studies have been proposed. [6, 21,
22, 24, 29, 30, 33, 37, 41, 48, 56] leveraged scanned multiple RGB-D images to reconstruct
and complete a 3D scene. SSCNet [45] combined the scene completion task with the 3D
semantic segmentation task. ScanComplete [8] extended the 3D completion task to large
scenes and designed the network to handle various scene scales during inferring. SG-NN [9]
first trained and evaluated the 3D scene completion model on a real-world scanned dataset,
and SPSG [10] first tackled color completion in 3D scenes apart from geometry completion.

Citation
Citation
{Dai, Siddiqui, Thies, Valentin, and Nie{T1ss }ner} 2021

Citation
Citation
{Choy, Xu, Gwak, Chen, and Savarese} 2016

Citation
Citation
{Groueix, Fisher, Kim, Russell, and Aubry} 2018

Citation
Citation
{Mescheder, Oechsle, Niemeyer, Nowozin, and Geiger} 2019

Citation
Citation
{Saito, Huang, Natsume, Morishima, Kanazawa, and Li} 2019

Citation
Citation
{Sun, Liu, Wang, and Sarma} 2018

Citation
Citation
{Xu, Wang, Ceylan, Mech, and Neumann} 2019

Citation
Citation
{Wu, Zhang, Zhang, Zhang, Freeman, and Tenenbaum} 2018

Citation
Citation
{Wu, Song, Khosla, Yu, Zhang, Tang, and Xiao} 2015

Citation
Citation
{Han, Li, Huang, Kalogerakis, and Yu} 2017

Citation
Citation
{Huang, Yu, Xu, Ni, and Le} 2020{}

Citation
Citation
{Sarmad, Lee, and Kim} 2019

Citation
Citation
{Yang, Feng, Shen, and Tian} 2017

Citation
Citation
{Yu, Rao, Wang, Liu, Lu, and Zhou} 2021

Citation
Citation
{Yuan, Khot, Held, Mertz, and Hebert} 2018

Citation
Citation
{Dai, Ruizhongtaiprotect unhbox voidb@x protect penalty @M  {}Qi, and Nie{T1ss }ner} 2017{}

Citation
Citation
{Park, Florence, Straub, Newcombe, and Lovegrove} 2019

Citation
Citation
{Kazhdan and Hoppe} 2013

Citation
Citation
{Kazhdan, Bolitho, and Hoppe} 2006

Citation
Citation
{Dai, Nie{T1ss }ner, Zollh{ö}fer, Izadi, and Theobalt} 2017{}

Citation
Citation
{Huang, Dai, Guibas, and Nie{T1ss }ner} 2017

Citation
Citation
{Huang, Thies, Dai, Kundu, Jiang, Guibas, Nie{T1ss }ner, Funkhouser, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020{}

Citation
Citation
{Izadi, Kim, Hilliges, Molyneaux, Newcombe, Kohli, Shotton, Hodges, Freeman, Davison, etprotect unhbox voidb@x protect penalty @M  {}al.} 2011

Citation
Citation
{Li, Han, Wang, Liu, and Yuan} 2020

Citation
Citation
{Li, Fan, Li, Cui, Sato, Pollefeys, and Oswald} 2022

Citation
Citation
{Maier, Kim, Cremers, Kautz, and Nie{T1ss }ner} 2017

Citation
Citation
{Newcombe, Izadi, Hilliges, Molyneaux, Kim, Davison, Kohi, Shotton, Hodges, and Fitzgibbon} 2011

Citation
Citation
{Roldao, Deprotect unhbox voidb@x protect penalty @M  {}Charette, and Verroust-Blondet} 2022

Citation
Citation
{Wang, Liu, and Tong} 2020

Citation
Citation
{Zhang, Liu, Lei, Lu, and Yang} 2019

Citation
Citation
{Song, Yu, Zeng, Chang, Savva, and Funkhouser} 2017

Citation
Citation
{Dai, Ritchie, Bokeloh, Reed, Sturm, and Nie{T1ss }ner} 2018

Citation
Citation
{Dai, Diller, and Nie{T1ss }ner} 2020

Citation
Citation
{Dai, Siddiqui, Thies, Valentin, and Nie{T1ss }ner} 2021



4 JHENG ET AL.: FREE-FORM 3D SCENE INPAINTING WITH DUAL-STREAM GAN

Figure 2: Overview of the proposed network. (a) Geometry and color dual-stream generator
exchanges and fuses embedded features from each other to complement respective decoders.
(b) The dual-stream discriminator uses the differentiable 2D rendering and the edge detector
to project the predicted scene to a 2D image and an edge map. Then, it optimizes them with
the target view and corresponding canny edge image.

However, the above prior works only focus on completing missing parts due to sensor limi-
tations, which are strongly correlated to viewing angles and have generally similar patterns.

To the best of our knowledge, we are the first to introduce the 3D scene inpainting task
and generate a free-form 3D scene dataset to train and evaluate the performance of complet-
ing manual masks in 3D space. Furthermore, our dual-stream GAN, complementing geom-
etry and color information with each other, solves the problem of over-smoothed geometry
shapes and blurred color boundaries in prior single-stream two-stage work [10].

2.2 2D Image Inpainting

2D image inpainting takes a corrupted image as input and fills the missing parts in the image
with semantically correct, and boundary-consistent contents. It is an important task for many
downstream visual tasks, such as object removal, damaged photo restoration, and 2D to 3D
photo transformation [44]. Traditional approaches [1, 11, 13, 20] reused the patches from
the image background or source images to repair the missing pixels with the most similar
one, but they only can handle repetitive patterns or small missing holes.

Recently, GAN [15] has made great progress in the image inpainting task, enabling
inpainting models to fill holes with realistic and semantically reasonable contents [12].
PConv [31] and GatedConv [53] extended regular rectangle masks to free-form masks with
irregular shapes and developed corresponding CNN modules to handle the more challeng-
ing masks. More recently, some practices [17, 32, 36] utilized additional edge constraints
to conquer the blurry results on large missing areas where the main structure of the object
is missing. [36] proposed an edge-color two-stage inpainting framework; [32] and [17] de-
veloped new generator models to combine and exchange structure and texture information.
Some others extended image inpainting to multi-view [25, 35, 40, 47] or light field [28].

Different from prior 2D inpainting studies, we first introduce the 3D inpainting task and
present a 3D-specific free-form mask generation algorithm due to the sparseness property in
3D space. Moreover, inspired by [17, 32, 36], we propose the first dual-stream GAN for the
3D inpainting task, not only cooperating 3D geometry and color information in the generator
but also regularizing color and edges from diverse viewpoints in the discriminator.
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3 Method
In this work, we propose a novel 3D scene inpainting task with the tailored FF-Matterport
dataset for the need in AR and VR applications. The 3D scenes in the dataset contain ir-
regular and diverse shapes of missing regions (masks) generated by our novel free-form 3D
mask generation algorithm (Sec. 3.1) that mimics humans drawing trajectories in 3D scenes.
To tackle this challenging yet practical task, we develop a dual-stream GAN model (Fig. 2)
that contains two main components, the dual-stream generator and the dual-stream discrim-
inator. The dual-stream generator (Sec. 3.2) leverages the mask information and the feature
fusion of geometry and color to generate semantic-constraint structures and shape-constraint
textures. In addition, the dual-stream discriminator (Sec. 3.3) further enhances the details
by regularizing color and corresponding edges on randomly rendered images. Finally, we
summarize the overall training loss. (Sec. 3.4)

3.1 Free-form 3D Dataset Generation
As illustrated in Fig. 1, our free-form 3D dataset aims to alleviate the issues of too regu-
lar patterns in missing areas and the lacking mask information in existing 3D completion
datasets [9, 10]. To generate free-form 3D masks, it is intuitive to modify the free-form 2D
mask generation algorithm [53], which uses strokes with random lengths and directions to
line up a drawing track. As all pixels in 2D images contain information, drawing straight
lines back and forth can cover the unwanted objects. However, since objects in 3D space are
sparse and have curved and complicated shapes, directly applying the previous algorithm in
3D space usually masks areas without objects or produces meaningless shapes (Fig. 3).

(a) Complete Mesh (b) Prior Algorithm (c) Our Algorithm

0
1
2
3
x

Empty Space

Figure 3: Trajectories comparison between (b) pre-
vious algorithm and (c) our algorithm when draw-
ing in (a). Due to the sparseness of 3D space, algo-
rithm (b) [53] generates masks on empty space and
remains weird object shapes. In contrast, our free-
form 3D algorithm (c) is able to produce practical
masks around the surface with better flexibility by
utilizing the property of TSDF representation.

To conquer the above challenges,
we design a novel 3D mask genera-
tion algorithm. Initially, it converts the
3D scene data to the truncated signed
distance field (TSDF) representation.
The algorithm can thus ensure that the
painted stroke persists around the sur-
face by checking the TSDF values. Af-
terward, we use an incremental mask-
ing strategy rather than the original 2-
point line strategy in [53]. Our strat-
egy dynamically decides the direction
and length of strokes, considering the
distance to the surface and the diame-
ter of the stroke. Besides, we randomly
sample points in 3D scenes as the start-
ing point for strokes to ensure diversity.
With our algorithm, the curved strokes
can fit various object shapes and occur
in diverse places in 3D scenes. More details are reported in supplementary materials.

We apply our mask generation algorithm to the Matterport3D [4] dataset with the offi-
cial train-test split and produce the first free-form 3D scene inpainting dataset, named FF-
Matterport. It contains 30-40% missing regions randomly located in the whole indoor scene
and is voxelized to 2cm grids (same resolution as [9, 10]), where we stored fused TSDF,
RGB value, and binary mask in separate channels. Notably, unlike in the 2D image inpaint-
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ing task where a mask can be randomly paired with any images, each free-form 3D mask in
our dataset is generated according to the object distribution of its corresponding scene.

3.2 Dual-stream Generator

As previously mentioned, the 3D inpainting task is more challenging because it contains
scenes with irregular and various missing regions. To reconstruct sophisticated and realistic
object surfaces in these scenes, we need to better leverage all the information from geometry,
color, and mask; thus, we develop a dual-stream generator specifically for this task.

To utilize the masks, we can treat them as additional channel inputs. Nonetheless, we
further exploit the benefits of masks, attaching a 3D gated convolution module (3D Gated-
Conv) extended from [53] to the generator. Specifically, the 3D GatedConv module helps the
generator gradually fill the masked regions with proper geometry and color contents by dy-
namically learning soft attention maps. This modification contributes significantly to model
performance, and we found that baselines without the mask information or 3D GatedConv
module only produce distorted restoration results (See Tab. 2).

Regarding the pipeline of the generator, SPSG [10] developed a two-stage pipeline,
which first completes the geometry of all missing areas and then generates color on the
surfaces specified in the first stage. We find that the geometry generator in this pipeline
completely ignores the semantic features of color. Also, the unstable geometry outcome of
the first stage causes error propagation to the second stage. To this end, we argue that the
geometry and color information should be considered simultaneously and can benefit each
other. Inspired by [17], we develop the first 3D dual-stream (geometry and color) generator
that can fuse and retrieve the knowledge from both streams during generation.

In Fig. 2 (a), our dual-generator consists of two generators, each with a U-Net variant.
In the encoding phase, the geometry and color scenes are embedded independently and pro-
jected to high-level feature space through corresponding generators. During the decoding
phase, the two generators fuse feature embedding from each other as an additional condition
to refine the respective decoded results. Besides, we combine the encoder and decoder fea-
tures with skip connections to create more delicate content. This operation allows us to fully
exchange geometry and color information during generation, producing both semantic-aware
geometry structure and shape-constrained color texture in predicted scenes. Compared with
the previous pipeline using a one-way feature stream forward from geometry to color, our
dual-stream pipeline provides a mutual feature exchange between the two generators. Conse-
quently, we can observe that our pipeline alleviates the error propagation problem, revealing
consistent performance improvements in both geometry and color results (Tab. 2).

3.3 Dual-stream Discriminator

To make the generator produce high-quality objects on missing regions, it is a common
practice to directly regularize generated scenes by designing loss functions or utilizing a
discriminator. In the field of 3D completion, [9] used a naive ℓ1 loss to regress the geometry
outputs and [10] applied a 2D discriminator to force the color outputs realistic under diverse
rendering views. Nevertheless, the above practices are inadequate to meet the need of 3D
scene inpainting as its missing areas, unlike small corrupted strips due to sensor limitation
in 3D completion, are generally large and lack structural contents. Specifically, we found
those methods are prone to produce over-smoothed structures and blurred color edges by
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interpolating nearby color and geometry values or linking mesh pieces (Fig. 4). Thus, we
develop a novel dual-stream discriminator to avoid producing such crude details.

As illustrated in Fig. 2 (b), our dual-stream discriminator is composed of two compo-
nents: a color discriminator and an edge discriminator. To begin with, our color discriminator
regularizes the quality of generated scenes on randomly rendered 2D images following [10].
This 2D color stream makes the projected 2D frames of the generated 3D scene as realistic as
possible and is more effective than applying a discriminator in 3D [10]. Moreover, to ensure
fine-grained geometry shapes and sharp color boundaries in the generated scene, we design
an edge discriminator further regularizing the corresponding edges of the rendered frames.
To elaborate, our edge discriminator compares the 2D edge maps extracted from real pro-
jected frames by the Canny edge detector [3] and that extracted from generated frames by
our NN-based edge detector. With the aid of our lightweight edge discriminator, we can not
only produce sharp color boundaries and detailed geometry contents on qualitative results
(Fig. 4) but also achieve huge improvements in quantitative results (Tab. 2).

3.4 Training Loss
Our training objectives can be categorized into two groups, extended from [9] and [10]. For
the naive full supervision loss, we supervise our geometry (the predicted TSDF scene Ty to
the target data Tt in 3D space) and color reconstruction (the rendered color Cy and depth
Dy images to the target images Ct and Dt in 2D space). The log-transformed ℓ1 TSDF loss
(computed on the predicted TSDF locations c with a total number of locations Nc), denoted
as Lgeo, is applied to penalize the geometry in 3D space. The Lcolor as well as depth Ldepth
(both are ℓ1 losses and are operated only on valid pixels p with a total number of valid pixels
Np) are leveraged to ensure geometry and color reconstruction on the rendered images.

Lgeo =
1

Nc
∑
c
||sign(Ty(c)) · logTy(c)− sign(Tt(c)) · logTt(c)||1 (1)

Lcolor =
1

Np
∑
p
||Cy(p)−Ct(p)||1 Ldepth =

1
Np

∑
p
||Dy(p)−Dt(p)||1 (2)

Furthermore, to improve visual quality and sharpen the geometry and color boundaries,
apart from the conventional content loss Lcont [14], we applied two conditional adversarial
losses (Ladv

color and Ladv
edge) on the rendered color Cy, normal Ny, and edge Ey images. [·, ·] means

concatenation. xcn = [Cx,Nx] and xe = Ex is the rendered images from input data.

Ladv
color = Excn,Cy,Ny(logD(xcn, [Cy,Ny]))+Excn,Ct ,Nt (log(1−D(xcn, [Ct ,Nt ]))) (3)

Ladv
edge = Exe,Ey(logD(xe,Ey))+Exe,Et (log(1−D(xe,Et))) (4)

Lcont = ||VGG8(Cy)−VGG8(Ct)||2 (5)
The overall loss is formulated as below, and λ1, λ2, λ3, λ4 are the scaling coefficients:

L = λ1Lgeo +λ2Lcolor +Ldepth +λ3Lcont +λ4(Ladv
color +Ladv

edge). (6)

4 Experiments

4.1 Experimental Settings
Training Settings: Our network is trained on a single NVIDIA GeForce RTX 2080 Ti with
a batch size of 2, and it takes about 6 epochs ≈ 48 hours to train until convergence. It
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is optimized via an Adam optimizer with a learning rate of 0.0001. The patch size of the
discriminator is 94 x 94 cropped from 320 x 256 images. The λ1,λ2,λ3,λ4 in Eq. 6 are set
as 0.3, 0.6, 0.01 and 0.005 via grid search. In the training stage, we crop the 3D scene into
64 x 64 x 128 chunk voxels to speed up the process. In the testing stage, we directly input
the room-sized scene to our model as 3D CNN is invariant to the scene scale.
Evaluation Metrics: For a fair comparison, we follow the evaluation metric in [10]. The
geometry performance is evaluated by IoU, Recall, and Chamfer Distance. Note that only
the observed regions in the target scene are evaluated, and we ignore the unobserved areas as
the same in [10]. Besides, the color performance is evaluated by SSIM (structural similarity
image metric) [2], Feature-ℓ1 [38], and FID (Fréchet Inception Distance) [19] to capture the
differences at both local and global scales between the rendered and target images.
Baselines: To verify the proposed dual-stream GAN in our novel task, we compare it with
several SOTA 3D completion approaches, including PIFu+ [42], SG-NN [9], and SPSG [10].
Also, we develop another baseline, SPSG equipped with mask inputs, to validate the impor-
tance of mask information. We follow [10] to implement all baselines and exclude SG-NN
from the evaluation of color performance as it is designed to complete geometry only.

Methods
Geometry Color

IoU(↑) Recall(↑) CD(↓) SSIM(↑) Feature-ℓ1(↓) FID(↓)

PIFu+ [42] 0.241 0.525 19.537 0.744 0.253 108.87
SG-NN [9] 0.636 0.857 20.988 - - -
SPSG [10] 0.466 0.683 17.457 0.829 0.220 75.10

SPSG (+mask) [10] 0.491 0.659 3.336 0.843 0.214 69.60

Ours 0.781 0.896 2.110 0.853 0.209 65.28

Table 1: The comparison of 3D geometric and color inpainting performance on the FF-
Matterport. With mask information and proper color and geometry interaction, our dual-
stream GAN outperforms all the baselines in both geometry and color metrics. Notably,
models without masks all fail in the CD metric due to generating redundant meshes outside
the missing areas, which verifies the importance of masks on the 3D scene inpainting task.

Methods
Geometry Color

IoU(↑) Recall(↑) CD(↓) SSIM(↑) Feature-ℓ1(↓) FID(↓)

Dual-stream GAN (Full) 0.781 0.896 2.110 0.8536 0.209 65.28
- Edge Discriminator 0.774 0.892 2.137 0.8534 0.209 65.62

- 3D GatedConv 0.747 0.875 2.250 0.8491 0.211 68.28
- Mask Info. 0.592 0.827 24.356 0.8471 0.213 69.75

Single-stream GAN 0.744 0.878 2.523 0.8511 0.210 66.68

Table 2: The ablation studies of 3D geometric and color inpainting performance on the FF-
Matterport. Compared with the single-stream GAN, our dual-stream GAN reaches higher
performance in all metrics, especially the three geometry metrics. Also, we show the effec-
tiveness of 3D GatedConv and mask components on the 3D scene inpainting task.

4.2 Main Results
We verify all methods on the FF-Matterport dataset and illustrate the quantitative and qual-
itative results in Tab. 1 and Fig. 4, respectively. From Tab. 1, PIFu+ obtains the worst per-
formance in most metrics, indicating that it cannot adapt to tackle this novel task. About
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(a) Input (b) SG-NN (c) SPSG (d) Ours (e) Ground Truth

Figure 4: Qualitative results of all methods on the FF-Matterport (Best viewed in zoomed
digital). Compared to our dual-stream GAN, SPSG fails to preserve details from input and
SG-NN predicts distorted structures with small holes in large missing areas in the 1st and
2nd rows. To further show the fine details of our predicted mesh, the 4th row zoom in on the
missing corner of the 3rd row. More analyses and discussions are reported in Sec. 4.2.

SG-NN, it captures more local features, resulting in higher IoU and Recall scores than other
baselines. But it fails to capture the global features and generates distorted structure with
small holes in large missing areas, such as the corner of the bed (1st row) and the sofa chair
on the left (2nd row) of Fig. 4 (b). Thus, it leads to bad performance on the CD metrics.

Regarding SPSG, the 1st row in Fig. 4 (c) shows that it fails to preserve the details of
complete parts from input scenes, such as the lamp beside the sofa, and results in lower
IoU and Recall scores. Besides, SPSG suffers from initial color bias pointed in [53] and
performs poorly on the color scores. On the contrary, our dual-stream GAN better utilizes
the mask information as well as both structure and semantic feature from dual-stream to
generate well-structured and semantic reasonable 3D scenes; accordingly, we achieve the
highest performance in all metrics.

To show the further restoration details, the 4th row of Fig. 4 zooms in on the missing
corner of the frame in the 3rd row. Unlike SG-NN and SPSG flattening and ignoring the
frame structure, our model easily distinguishes the frame from the wall using color features
and recovers the corner with straight and delicate edges guided by our edge adversarial loss.

4.3 Ablation Studies
We summarize the ablation study in Tab. 2. First, we analyze the influence of our edge
discriminator. Comparing the 1st and 2nd rows, the edge discriminator causes minor im-
provements in numerical evaluations but significantly contributes to the visualization (in
supplementary). This phenomenon echoes our hypothesis that 2D edge loss can guide 3D
geometry and color to better collaborate on generating delicate 2D edges. Then, we verify

Citation
Citation
{Yu, Lin, Yang, Shen, Lu, and Huang} 2019



10 JHENG ET AL.: FREE-FORM 3D SCENE INPAINTING WITH DUAL-STREAM GAN

the design of our pipeline. We build a single-stream sequential generator with mask inputs
and 3D GatedConv, named single-stream GAN in Tab. 2. The single-stream GAN generates
geometry features without knowing color features and then passes them to the color stream.
As a result, its geometry performance declined larger than color performance.

Lastly, we examine the efficacy of 3D GatedConv and mask information. As shown in the
3rd and 4throws of Tab. 2, they substantially improve the performance, both in geometry and
color scores, which reveals the mask information is indispensable in the novel 3D inpainting
task. This observation is consistent with the advancement of SPSG with mask inputs in
the main experiment (Tab. 1). Especially the CD metric is evaluated on the fixed-number
points uniformly sampled from predicted meshes, models without mask information tend to
generate redundant meshes outside the missing areas, resulting in bad performance. Through
these analyses, we demonstrate the importance of mask information on the challenging 3D
scene inpainting task, which means the proposed dataset and approach are requisite.

4.4 Practical Application: Object Removal

Our 3D scene inpainting task is designed for user editing purposes, like removing unwanted
objects when constructing realistic scenes, practical for AR/VR applications. To further
demonstrate the whole process of scenes application, we apply our method to an example
of 3D object removal with real manual masks in Fig. 5. With existing 3D editing tools (e.g.
MeshLab1), (a) users can easily draw strokes with paintbrushes in 3D scenes to (b) select
unwanted regions like the screen and (c) mask out them. Given the remained scene with the
masked regions (red areas in (b)), our model can fill these regions with realistic contexts (e.g.
the sharp corner marked in red) (As shown in (d)).

(a) 3D Stroke (c) Delete Object(b) Select Object (d) Predict Result
Figure 5: An example of object removal. (a), (b), and (c) show the Z-painting tool in Mesh-
Lab can draw 3D strokes to select and delete the unwanted area in a scene. Our predicted
result is shown in (d).

5 Conclusion

In this paper, we propose a novel free-form 3D scene inpainting task with a new FF-Matterport
dataset imitating user drawing masks in real-world 3D editing applications. We further in-
troduce a dual-stream GAN model to address the increased difficulty of the new task and
achieve SOTA results. To elaborate, our dual-stream generator utilizes both geometry and
color information to recover the semantic boundaries in large missing regions, and our dual-
stream discriminator enhances the inpainted details to be realistic and delicate.

1https://www.meshlab.net/
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