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Abstract

In this supplementary material, we detail our free-form 3D mask generation algo-
rithm for the FF-Matterport dataset in Sec. 1 with pseudo code in Algorithm 1. We then
provide the implementation details of our designed network dual-stream generator and
the NN-based edge detector in dual-stream discriminator in Sec. 2. Furthermore, we
show additional results in Sec. 3, including the qualitative (perceptual) improvement of
our edge discriminator (Sec. 3.1) and the limitations of our proposed model (Sec. 3.2).

1 Free-form 3D Mask Generation Algorithm
As stated in Sec. 3.1 of the main paper, our designed free-form 3D mask generation algo-
rithm aims to mimic human drawing trajectories in 3D space and randomly generate diverse
free-form masks for efficient training and evaluation. To avoid covering the empty space
in the scene into the masked areas and to flexibly draw arbitrary shapes of 3D objects, we
utilize the characteristic of TSDF and dynamically decide the length and direction of strokes
based on the TSDF values. We show our algorithm in Algorithm 1.

The input of the algorithm is an original scene So from a real-world scanned scene
containing To TSDF and Co color voxelized values, and three hyper-parameters diameter,
maxStrokeStep, and totalStep to control the mask distribution. The output is a masked
scene Sm for training and inferring consisting of masked Tm TSDF and Cm color voxelized
values with corresponding binary mask map Mm. This algorithm is for the 64x64x128 chunk
size in the training dataset. For the test dataset which contains whole indoor rooms, We run
this algorithm several times in equal proportions to the size of the indoor rooms.
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Algorithm 1 Free-form 3D Mask Generation Algorithm
1: Input: Original scene: So = {To,Co}, and diameter, maxStrokeStep, totalStep.

2: Output: Masked scene: Sm = {Tm,Cm,Mm}.
3: Init: Copy from original scene Tm← To, Cm←Co, (#step,#strokeStep)← (0,0).

4: function RANDOMMAXSTROKE(s)

5: return random.randint(s, s+10)

6: end function
7: function FINDVALIDBALL(c,d, t) ▷ c is center, d is diameter, and t is threshold

8: return X ←{x|x ∈ Bc,d ∩|Tm(x)| ≤ t} ▷ Bc,d is a ball centered at c with diameter d

9: end function
10: center Oc← random.choice(|Tm| ≤ 1) ▷ Random a starting point on occupied voxels

11: max stroke step L← RANDOMMAXSTROKE(maxStrokeStep)

12: while #step≤ TotalStep do
13: Mask out BOc,diameter in {Tm,Cm,Mm}
14: #step← #step+1

15: #strokeStep← #strokeStep+1

16: if #strokeStep≥ L then ▷ Restart a new stroke

17: center Oc← random.choice(|Tm| ≤ 1)

18: max stroke step L← RANDOMMAXSTROKE(maxStrokeStep)

19: #strokeStep← 0

20: else if X ← FINDVALIDBALL(Oc,diameter//2,1) ̸= /0 then ▷ Move a small step

21: Oc← random.choice(X)

22: else if X ← FINDVALIDBALL(Oc,diameter,5) ̸= /0 then ▷ Move a big step

23: Oc← random.choice(X)

24: else ▷ Dead end, Restart a new stroke

25: center Oc← random.choice(|Tm| ≤ 1)

26: max stroke step L← RANDOMMAXSTROKE(maxStrokeStep)

27: #strokeStep← 0

28: end if
29: end while
30: return {Tm,Cm,Mm}.
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2 Network Architecture

We show the implementation details of our proposed network architectures: dual-stream gen-
erator in Fig. 1 and the NN-based edge detector of dual-stream discriminator in Fig. 2. The
implementation of the patch-based discriminator of dual-stream discriminator follows the
one in SPSG [2]. In the figures, GatedConv and Conv stand for the 3D gated convolutional
layer and 3D convolutional layer. Conv2D denotes the 2D convolutional layer. The param-
eters of convolution are given by (in-channel, out-channel, kernel size, stride, padding), and
all GatedConv layers are paired with a 3D batch normalization and a Leaky ReLU.
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Figure 1: Details of dual-stream generator architecture, where ⊕ denotes add and dashed
line denotes skip connection. We process the geometry and color scenes in two streams and
concatenate the predicted geometry and color scenes to get the final result.
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Conv2D(3, 16, 3, 1, 1)
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Figure 2: Details of edge detector architecture of dual-stream discriminator, where⊕ denotes
add and dashed line denotes skip connection. The edge detector takes the rendered 2D image
from the differentiable 2D rendering and extracts the corresponding edge map for our edge-
stream discriminator.

3 Additional Results

3.1 Edge Discriminator Qualitative Result

(a) Input (b) w/o Edge Disc. (c) w/ Edge Disc. (d) Ground Truth

Colored
Image

Geometry
Only
Image

Figure 3: Additional qualitative results of the dual-stream discriminator on FF-Matterport.
By adding the edge stream to the conventional color stream discriminator, the color boundary
becomes less blurred (shown in red frames), and the geometry shapes become more straight
and sharper (shown in zoomed-in pictures in the 2nd row with yellow frames).

In the Sec. 3.3 of the main paper, we state that our additional discriminator aims to
enhance the sharpness and details of the results for better human perception. As shown in
Fig. 3, we provide additional qualitative results on FF-Matterport to demonstrate the efficacy
of our dual-stream discriminator. Compared with (b) the model without our edge discrimi-
nator, the full model (c) performs better on both geometry and color. In (c), the bottom left
corner (red frame) of the color image becomes less blurred after adding the edge stream,
and the top right corner (yellow frame) of the color image zoomed in as the geometry only
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(a) Input (c) SPSG (d) Ours (e) Ground Truth(b) SG-NN
Figure 4: A failure case of the frame on the right side in (a) losing most of the edges and
color. Even though our model fails to predict distinct structures and edges in the missing
parts, our results (d) still outperform the baselines SG-NN [1] (b) and SPSG [2] (c) in both
geometry and color visual performance.

image shows that the geometry shapes become sharper after adding our edge discriminator.
This phenomenon echoes our motivation that 2D edge loss can simultaneously guide the 3D
geometry and color streams to generate delicate edges.

3.2 Limitation
Although our proposed method can generate realistic geometry and color results for the real-
world 3D scene inpainting task, we still find its limitations and unsolved challenges as shown
in Fig. 4. For example, in the 1st row (a), the right side of an incomplete picture frame loses
most of the edges and color; also, the 2nd row (a) shows that the structure of the frame is
very close to the wall and hard to be distinguished. Therefore, even with the help of our
dual-stream GAN design, the model fails to predict the correct edges of the top right and
bottom left corners, resulting in blurred color boundaries in the comparison of (d) and (e).
Still, our predicted results contain more details than SG-NN [1] (b) and SPSG [2] (c).

Moreover, due to the natural limit of CNN models and voxel representation, the output
resolution is restricted. Even though some new 3D data representations are proposed re-
cently and claimed to support the unlimited resolution, such as implicit function, it is still
challenging to properly handle the mask information in the 3D scene inpainting task.
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