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1 Overview
In this supplementary material, we present more experimental results and analyses to support
our proposed patch-wise road keypoints detection scheme and multi-task framework.

• We present samples of datasets we used for experiments in section 2.

• We provide the summary of the APLS metric in section 3.

• We provide the implementation details of graph optimization strategies in section 4.

• We conduct extensive experiments on the joint pyramid upsampling (JPU) module
within the framework architecture in section 5.

• We show more visualization results of constructed road graphs in section 6.

2 Experimental Datasets
Fig. 1 shows several representative satellite imagery in DeepGlobe Road Extraction Dataset [2],
Massachusetts Roads Dataset [3], and RoadTracer Dataset [1].
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JPU → position
locating

probability
predicting

link
predicting

DeepGlobe Massachusetts Roads
P-F1 APLS IoU P-F1 APLS IoU
77.44 69.07 65.24 74.36 62.80 56.43

✓ 78.04 69.83 65.53 74.80 63.37 56.80
✓ ✓ 76.85 68.54 64.97 73.49 62.15 56.38
✓ ✓ 77.32 69.38 65.23 73.80 62.46 56.61
✓ ✓ ✓ 76.21 67.96 64.91 72.17 60.87 55.89

Table 1: Experimental results of introducing JPU for probability and link predicting network.

3 APLS Metric
To measure the similarity between ground truth and proposal road graphs, Van et al. [5]
proposed Average Path Length Similarity (APLS). Based upon Dijkstra’s shortest path algo-
rithm, APLS sum the differences in optimal paths between ground truth and proposal graphs.
Graph augmentation, node snapping, and symmetric comparisons are utilized in evaluating
the APLS metric.

4 Graph Optimization Details
Connecting adjacent but unconnected endpoints. We traverse every two patches that are
adjacent (1×2 rec-patch) and find out all rec-patches that two patches within are also road
patches. For each rec-patch, we count the number of links of two patches in it respectively.
If the numbers are both less than or equal to 1, then it means the road keypoints of these
two patches are both endpoints of the predicted road graph. For two adjacent endpoints in a
rec-patch, if they are unconnected, we add a link between them.

Removing triangle and quadrilateral. We traverse all 22 patches (2×2 super-patch)
out of all 642 patches and find out all interconnected three patches that are also road patches
within each super-patch. Then we remove the diagonal link between these three patches and
remain the other two links. Besides, we also find out all super-patches that four patches
within each of them are all road patches and connected as a quadrilateral. Then we remove
the longest link of these four links based on the distance between road keypoints in these
patches.

5 Framework Architecture
We conduct extensive experiments to verify the effectiveness of multi-scale feature fusion
with the joint pyramid upsampling (JPU) [6] module for patch-wise keypoint locating instead
of probability or link predicting. As shown in Tab. 1, introducing JPU for probability or link
predicting network decreases overall road graph construction performance with pixel-based
F1 score and APLS, which implies low-level detailed information is unnecessary and even
detrimental for learning patch-wise road probability and adjacent relationships.

6 More Visualization Results
As shown in Fig. 2, we present more visualization results of constructed road graphs based on
different road extraction approaches for comparison, including D-LinkNet [7], VecRoad [4],
and our proposed PaRK-Detect scheme.
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Figure 1: Examples of satellite imagery in DeepGlobe Road Extraction Dataset (Top), Mas-
sachusetts Roads Dataset (Middle), and RoadTracer Dataset (Bottom).
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Figure 2: More visualization results of constructed road graphs. Up Left: original satel-
lite imagery. Up Right: road extraction results based on D-LinkNet. Down Left: road
extraction results based on VecRoad. Down Right: road extraction results based on PaRK-
Detect scheme.
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