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Abstract

This paper is on face/head reenactment where the goal is to transfer the facial pose
(3D head orientation and expression) of a target face to a source face. Previous meth-
ods focus on learning embedding networks for identity and pose disentanglement which
proves to be a rather hard task, degrading the quality of the generated images. We take
a different approach, bypassing the training of such networks, by using (fine-tuned) pre-
trained GANs which have been shown capable of producing high-quality facial images.
Because GANSs are characterized by weak controllability, the core of our approach is a
method to discover which directions in latent GAN space are responsible for control-
ling facial pose and expression variations. We present a simple pipeline to learn such
directions with the aid of a 3D shape model which, by construction, already captures
disentangled directions for facial pose, identity and expression. Moreover, we show that
by embedding real images in the GAN latent space, our method can be successfully used
for the reenactment of real-world faces. Our method features several favorable properties
including using a single source image (one-shot) and enabling cross-person reenactment.
Our qualitative and quantitative results show that our approach often produces reenacted
faces of significantly higher quality than those produced by state-of-the-art methods for
the standard benchmarks of VoxCelebl & 2. Source code is available at: https:
//github.com/StelaBou/stylegan_directions_face_reenactment

1 Introduction

This paper is on face/head reenactment where the goal is to transfer the facial pose, defined
here as the rigid 3D face/head orientation and the deformable facial expression, of a tar-
get facial image to a source facial image. Such technology is the key enabler for creating
high-quality digital head avatars which find a multitude of applications in telepresence, Aug-
mented Reality/Virtual Reality (AR/VR), and the creative industries. Recently, and thanks
to the advent of Deep Learning, there has been tremendous progress in the so-called neural
face reenactment [7, 53, 59]. Despite the progress, synthesizing photorealistic face/head se-
quences is still considered a hard task with the quality of existing solutions being far from
sufficient for the demanding applications mentioned above.
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A major challenge that most prior methods [5, 7, 16, 58, 59, 60] have focused so far i
how to achieve identity and pose disentanglement to both preserve the appearance and id
tity characteristics of the source face and successfully transfer to the facial pose of the targ
face. Training conditional generative models to produce embeddings with such disentang|
ment properties is known to be a dif cult machine learning task [10, 25, 40], and this turns
out to be a signi cant technical impediment for face reenactment too. Additionally, previous
methods [58, 59] have approached reenactment using paired data during training. Howev
under such a paired setting it is not clear how to formulate cross-person reenactment [58].

In this work, we are taking a different path to neural face reenactment. A major mo-
tivation for our work is that unconstrained face generation using modern state-of-the-a
GANSs [21, 22, 23] has reached levels of unprecedented realism to the point that it is ofte
impossible to distinguish real facial images from generated ones. Hence, the research qu
tion we would like to address in this paper an a pretrained GAN23] be adapted for face
reenactment? key challenge that needs to be addressed to this end, is that GANs come wit
no semantic parameters to control their output. Hence, in order to alleviate this, the core
our approach is a method to discover whdilections in the latent GAN spa@ge respon-
sible for controlling facial pose and expression variations. Knowledge of these direction
would directly equip the pretrained GAN with the desired reenactment capabilities. Inspire
by Voynov and Babenko [50], we present a very simple pipeline to learn such directions witl
the help of a linear 3D shape model [14]. By construction, such a shape model captures d
entangled directions for facial pose, identity and expression which is exactly what is require
for reenactment. Moreover, a second key challenge that needs to be addressed is how to
the GAN for the manipulation of real-world images. Capitalizing on [44], we further show
that by embedding real images in the GAN latent space, our pipeline can be successfu
used for real face reenactment. Overall, we make the followinrgributions:

1. Instead of training conditional generative models [7, 59], we present a different ap
proach to face reenactment by nding the directions in the latent space of a pretraine
GAN (StyleGAN2 [23] ne-tuned on the VoxCelebl dataset) that are responsible for
controlling the facial pose (i.e. rigid head orientation and expression), and show hov
these directions can be used for neural face reenactment on video datasets.

2. To achieve our goal, we describesimple pipelinghat is trained with the aid of a
linear 3D shape model which already contains disentangled directions for facial shar
in terms of pose, identity and expression. We further show that our pipeline can b
trained with real images too by rstly embedding them into the GAN space, enabling
the successful reenactment of real-world faces.

3. We show that our method features several favorable properties including using a sing
source image (one-shot), and enabling cross-person reenactment.

4. We perform several qualitative and quantitative comparisons with recent state-of-the
art reenactment methods, illustrating that our approach often produces reenacted fac
of signi cantly higher quality for the standard benchmarks of VoxCelebl & 2 [8, 27].

2 Related work

Semantic face editing:There is a plethora of recent works that investigate the existence of
interpretable directions in the GAN's latent space [19, 30, 31, 38, 39, 47, 48, 50, 56, 57
These methods are able to successfully edit synthetic images, however, most of them
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not allow controllable editing and thus they cannot be applied on the face reenactment t
Voynov and Babenko [50], introduce an unsupervised method that is able to discover |
entangled linear directions in the latent GAN space by jointly learning the directions an
classi er that learns to predict which direction is responsible for the image transformatic
Our method is inspired by Voynov and Babenko [50], extending it in several ways to mak
suitable for neural face reenactment. Additionally, there is a line of work that allows expli
controllable facial image editing [2, 10, 13, 15, 28, 40, 51]. Related to our method is S
leRig [43] which uses 3DMM parameters to control the generated images from a pretrai
StyleGAN2. StyleRig's training pipeline is not end-to-end and signi cantly more compli
cated than ours, while in order to learn better disentangled directions, StyleRig requ
different models for different attributes (e.g. pose, expression). In contrast, we learn
disentangled directions for face reenactment simultaneously and our model can succes:
edit all attributes as well as edit only one attribute. Moreover, StyleRig is mainly applied
synthetic images, thus real image editing is not straightforward. Consequently, the aforen
tioned issues restrict StyleRig's applicability for real-world face reenactment, where varic
facial attributes change simultaneously. A follow-up work, PIE [42], focuses on invertir
real images to enable editing using StyleRig [43]. However, their method is computationz
expensive (10 min/image) which is prohibitive for video-based facial reenactment.

GAN inversion: GAN inversion aims to encode real images into the latent space of pr
trained GANSs [21, 23], which enables their editing using existing methods of synthetic il
age manipulation. Most of the inversion techniques [3, 4, 11, 34, 44, 52] train encoder-bz
architectures that focus on predicting the best latent codes that can generate images vis
similar with the original ones and allow successful editing. The authors of [63] propose a
brid approach which consists of learning an encoder followed by an optimization step on
latent space to re ne the similarity between the reconstructed and real images. Additione
Richardsoret al.[34] introduce a method that tries to solve the editability-perception trads
off, while recently in [35], the authors propose ne-tuning the generator to better captt
appearance features, so that the inverted images resemble the original ones.

Neural face/head reenactment:Face reenactment is a non-trivial task, as it requires wid
generalization across identity and facial pose. Many of the proposed methods rely or
cial landmark information [16, 18, 45, 46, 54, 58, 59, 61]. The authors of [59] propo
a one-shot face reenactment method driven by landmarks, which decomposes an imag
pose-dependent and pose-independent components. A limitation of landmark based me
is that landmarks preserve identity information, thus impeding their applicability on cros
subject face reenactment [7]. In [7] the authors perform face reenactment by learning
and identity embeddings using two different encoders. Additionally, warping-based me
ods [33, 41, 53, 55] synthesize the reenacted images based on the motion of the dri
faces. Those methods produce realistic results, however they suffer from visual artifacts
pose mismatch especially in large head pose variations. Finally, the authors of [26] prof:
a two-step architecture that aims to disentangle the spatial and style components of an ir
that leads to better preservation of the source identity, while in [12] the authors presel
GAN-based method conditioned on a 3D face representation [64].

To summarize, all the aforementioned methods rely on trainorglitional generative
models on large paired datasets in order to learn facial descriptors with disentanglen
properties. In this paper, we propose a new approach for face reenactment that learns ¢
tangled directions in the latent space of a pretrained StyleGAN2 on the VoxCeleb dataset.
show that the discovery of meaningful and disentangled directions that are responsible
controlling the facial pose can be used for high quality self- and cross-identity reenactme



4 BOUNARELI ET AL.: FINDING DIRECTIONS IN GAN'S LATENT SPACE FOR NFR

Figure 1: Overview of our method: Given a pair of sourcés and target; images, we

calculate the facial pose parameter vecfmyandp; using the Nejp network, respectively.

The matrix of directionsA is trained such that, given the shifiv = ADp, the reenacted
imagel; generated using the latent code = ws+ Dw, illustrates the facial pose of the
target face, while maintaining the identity of the source face.

3 Method

Our method consists of three parts detailed in the following subsections. In Section 3..
we show how to nd the facial pose directions in the latent GAN space and use them fo
face/head reenactment. In Section 3.2, we describe how to extend our method to handle r
facial images. Finally, in Section 3.3, we investigate how better results can be obtained t
ne-tuning on paired video data.

3.1 Finding the reenactment latent directions

The generato6 takes as input latent codes N (0;1) 2 R%12 and generates imagés
G(z) 2 R® 256 256 gStyleGAN2 rstly maps the latent codeinto the intermediate latent
codew 2 R512 using a series of fully connected layers. Then, the latent eoitefed into
each convolution layer of StyleGAN2's generator. This mapping enforces the disentangle
representation of StyleGAN2 [23]. In order to fairly compare our work with previous face
reenactment methods, we need a StyleGAN2 model that generates synthetic images that
semble the distribution of the VoxCeleb dataset [27]. This dataset is more diverse compar:
to Flickr-Faces-HQ (FFHQ) dataset [21] in terms of head poses and expressions, providir
the ability to nd more meaningful directions for face reenactment (e.g. GANs pretrained or
FFHQ do not account for roll changes in head pose). Having a pretrained StyleGAN2 gel
erator on FFHQ dataset, we use the method of Kaetasd. [22] to ne-tune the generator
on VoxCeleb. We note that we do not netune the generator under any reenactment obje
tive. Our generator on VoxCeleb is able to produce synthetic images with random identitie
(different from the identities of VoxCeleb) that follow the distribution of VoxCeleb dataset
in terms of head poses and expressions.

A facial shapes2 R3N (N is the number of vertices) can be written in terms of a linear
3D shape model as:

S= S+ Spi+ ScPe; 1)

wheresis the mean 3D shap§; 2 RSN ™ andS. 2 R3N ™ gre the PCA bases for identity
and expression, angi and pe are the corresponding identity and expression coef cients.
Moreover, we denote g%, 2 RS the rigid head orientation de ned by the three Euler angles
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(yaw, pitch, roll). For reenactment, we are interested in manipulating head orientation
expression, so our facial pose parameter vecipH§py; Pe] 2 R3* ™ \We note that all PCA
shape bases are orthogonal to each other, and hence they capture disentangled variati
identity and expression. They are calculated in a frontalized reference frame, thus they
also disentangled with head orientation. These bases can be also interpreted as directic
the shape space. We propose to learn similar directions in the GAN latent space.

In particular, we propose to associate a chaDgen facial pose, with a chandgew in
the (intermediate) latent GAN space so that the two generated ing{ggsandG(w + Dw)
differ only in pose by the same amouPdinduced byDp. If the directions sought in the GAN
latent space are assumed to be linear [29], this implies the following linear relationship:

Dw = ADp; (2

whereA 2 R%ut d4n js g matrix, the columns of which (i.el,) represent the directions in
GAN latent space. In our casdy, = (3+ me) anddyye= N, 512, whereN, is the number
of the generators layers we opt to apply shift changes.

Training pipeline: The matrixA is unknown so we propose the simple pipeline of Fig. 1 tc
estimate it: in particular, we sample two random latent cadesdz (s, t for source and
target, respectively) and pass them through the gendeatbhe two generated imagés=
G(zs) andly = G(z) are fed into the pre-trained Ngtwhich estimates the corresponding
pose parameter vectorgs and p;, respectively. Using Eq. 2, we compubsv = ADp =
A(pt ps) andw; = wg+ Dw. Fromw; our pipeline generates the reenacted facial imag
I = G(w;), which depicts the source face in the facial pose of the target. The only traina
guantity in the above pipeline is the matdxcontaining the unknown directions in GAN
latent space. We propose to learn it in a self-supervised manner.

Training losses: Our pipeline is trained by minimizing the following total loss:

L=1rL¢+ligLig+ I perl per; (3)

wherel ; = 1;1 g = 10 and per= 10. Thereenactment losis, ensures successful facial pose
transfer from target to source and itis de ned Bg= L sh+ Leyet Lmouth Lsh= kS Sgtky

is the shape loss, whe$ is the 3D shape of the reenacted image qds the reconstructed
ground-truth3D shape calculated using Eq. 1 with the identity coef cigntef the source
face and the coef cientge of the target face. Additionally, to enhance the expression transf
we calculate the eye logsye (the mouth l0s$ ymouthis computed in a similar fashion) which
compares the inner distances between the eye landmark pairs of upper and lower ey
between the reenacted and reconstructed ground-truth shapes (see supplementary for de
explanation of eyé eyeand mouth_ moutnlosses). Additionallyliq is anidentity lossbased
on the cosine similarity of features extracted from the solg@nd the reenactdd image
using the face recognition network of [9]. This loss imposes that the identity of the source
preserved in the reenacted image. Finally, we also found that better image quality is obta
if we additionally usd. per which is the standargderceptual los®f [20].

Training details: We estimate the distribution of each element of the pose parameters
by randomly generating 10K images and computing their correspondirggtors. Using
the estimated distributions, during training, we re-scale each elemenfrofm its origi-
nal range to a common ran@iea; a]. Furthermore, to increase the disentanglement of th
learned directions of our method, we follow a training strategy where for 50% of the traini
samples we reenact only one attribute by usdpg-[ 0; :::; §;:::0], whereg is sampled from

a uniform distributiond[ a;a].
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3.2 Real image reenactment

So far our method is able to transfer facial pose from a source facial image to a target on
for synthetically generated images. To extend our method to work with real images, in thi
section, we propose (a) to use a pipeline for inverting the images back to the latent coc
space of StyleGAN2, and (b) a mixed training approach for discovering the latent directions
Real image inversion: Ideally, the inversion method should produce latent codes that can
generate facial images identical with the original oaesl enable image editing without
producing visual artifacts. Although satisfying both requirements is challenging [3, 34, 44]
we found that the following pipeline produces excellent results for the purposes of our goe
(i.e. face/head reenactment). During training, we employ an encoder based method [4
to invert the real images into th&/ + space [1]. However, directly using the inverted latent
codesv™ does not produce satisfactory reenactment results. This happens because the la
codes obtained from inversion, may present a domain gap from the latent codes of synthe
images. To alleviate this, we propose a mixed data approach for training the pipeline c
Section 3.1: speci cally, we rst invert the extracted frames from the VoxCeleb dataset, anc
during training, at each iteration (i.e. for each batch) we use 50% random latentcades
50% embedded latent coded".

The inverted images using the encoder based method [44] might still be missing son
identity details. To alleviate this, only during inference, we use an additional optimization
step [35] that lightly optimizes the generator, so that the newly generated image more close
resembles the original one. Note that this step does not affect the calculatid¥ ahd is
used only during inference to obtain a higher quality inversion. We perform the optimizatior
for 200 steps and only on the source frame of each video.

3.3 Fine-tuning on paired video data

Our method so far has been trained with unpaired static facial images. This has at lec
two advantages: (a) it enables training with a very large number of identities, and (b) seen
more suitable for cross-person reenactment. However, additional improvements enabl
by the optimization of additional losses can be obtained by further training on paired dat
from VoxCelebl. Compared to training from scratch on video data, as in most previou
methods (e.g. [7, 58, 59]), we believe that our approach offers a more balanced option th
combines the best of both worlds: training with unpaired static images and ne-tuning with
paired video data. From each video of our training set, we randomly sample a source anc
target face that have the same identity but different pose and expression. Consequently,
minimize the following loss functioh = | (L, + ' igLig + | perlk per+ | pixL pix, WhereL is

the same reenactment loss de ned in SectionBid andL per are the identity and perceptual
losses, however this time calculated between the reengcaed the target imade andL pix

is a pixel-wisel 1 loss between the reenacted and target images.

4 Experiments

In this section, we present qualitative and quantitative results and comparisons of our meth
with recent state-of-the-art approaches. The bulk of our results and comparisons, report
in Section 4.1, are on self- and cross-person reenactment on the VoxCelebl [27] datas
Comparisons with state-of-the-art on the VoxCeleb2 [8] test set released by [58] are provide
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in the supplementary material. Finally, in Section 4.2 we report ablation studies on
various design choices of our method.

Implementation details: We ne-tune StyleGAN2 on the VoxCelebl dataset with 25866
image resolution and we train the encoder of [44] for real image inversion. The 3D she
model we use is DECA [14]. For our training procedure, we only learn a matrix of directio
A2 RN 519 kywherek= 3+ me;me= 12 andN, = 8. We train three matrices of directions:
the rst one is on synthetically generated images (Section 3.1), while the second one
mixed real and synthetic data (Section 3.2). Finally, as described in Section 3.3, we ob
a third model by ne-tuning the second one on paired data. For training, we used the Ad
optimizer [24] with constant learning rate 140. We train our models for 20K iterations with
a batch size of 12 on synthetic and real images. Fine-tuning is performed on real pa
images for 150K iterations. All models are implemented in PyTorch [32].

4.1 Comparison with state-of-the-art on VoxCeleb

Herein, we compare the performance of our method against the state-of-the-art in face r
actment on VoxCeleb1 [27]. We conduct two types of experiments, namely self- and crc
person reenactment. For evaluation purposes, we use both the video data provided by
and the original test-set of VoxCelebl. We note that there is no overlap between the t
and test identities and videos. Similar comparisons on the VoxCeleb2 [8] test set rele:
by [58] are provided in the supplementary material. We compare our method quantitativ
and qualitatively with six methods: X2Face [55], FOMM [41], Fast bi-layer [59], Neural
Head [7], LSR [26] and PIR [33]. For X2Face [55], FOMM [41] and PIR [33], we use th
pretrained (by the authors) model on VoxCelebl. For Fast bi-layer [59], Neural-Head
and LSR [26] we also use the pretrained (by the authors) models on VoxCeleb2 [8]. For
comparison with the methods of Neural-Head [7] and LSR [26], we evaluate their mo
under the one-shot setting.

Quantitative comparisons: We report seven different metrics. We compute the Learne
Perceptual Image Path Similarity (LPIPS) [62] to measure the perceptual similarities, ani
quantify identity preservation we compute the cosine similarity (CSIM) of ArcFace [9] fe:
tures. Moreover, we measure the quality of the reenacted images using the Frechet-Ince
Distance (FID) metric [17], while we also report the Fréchet Video Distance (FVD) [49] me
ric that measures both the video quality and the temporal consistency of the generated vic
To quantify the facial pose transfer, we calculate the normalized mean error (NME) betw:
the predicted landmarks in the reenacted and target images. We use [6] for landmark est
tion, and we calculate the NME by normalizing it with the square root of the ground tru
face bounding box and multiplying it by $0We further evaluate pose transfer by calculat-
ing the mearL1 distance of the head pose (Pose) in degrees and thelrhahistance of the
expression coef cientpe (Exp.).

In Tables 1 and 2, we report the quantitative results for self and cross-subject reen
ment, respectively. For self-reenactment, we combine the original test set of VoxCelebl |
and the test set provided by [58]. For cross-subject reenactment, we randomly select
video pairs from the small test set of [58]. In self-reenactment, all metrics are calcula
between the reenacted and the target faces, while in cross-subject reenactment, CSIM i
culated between the source and the reenacted faces and pose/expression error betwe
target and the reenacted faces. As a result, the values of CSIM in cross-subject reenact
are expected to be lower. Regarding self-reenactment, X2Face and PIR have a higher
on CSIM, however we argue that this is due to their warping-based technique which ena
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better reconstruction of the background and other identity characteristics. Importantly, th
guantitative result is accompanied by poor qualitative results (e.g. see Fig. 2). Additionally
regarding pose transfer, we achieve similar results on NME and Pose error with Fast B
layer [59] and LSR [26] (their methods are trained on VoxCeleb2 which containmére
identities) and we outperform all methods on expression transfer. Finally, our results on FlI
and FVD metric con rm that the quality of our generated videos resembles the quality o
VoxCeleb dataset. Cross-subject reenactment is more challenging, as source and target f
have different identities. In this case, it is important to maintain the source identity charac
teristics without transferring the target ones. In Table 2, the high CSIM value for FOMM
is not accompanied by good qualitative results as shown in Fig. 2, where FOMM, in mos
cases, is not able to transfer the target head pose (hence their method achieves higher C:
but poor pose transfer). Additionally, we achieve better head pose and expression trans
compared to all other methods.

Method CSIM | LPIPS| FID | FVD | NME | Pose| Exp.
X2Face [55] || 0.70 | 0.13 | 35.5| 409 | 17.8 | 1.5 | 0.90
FOMM [41] 065 | 0.14 | 356| 402 | 34.1 | 50 | 1.3

Fast Bi-layer [59]|| 0.64 | 0.23 | 52.8| 634 | 13.2 | 1.1 | 0.80
Neural-Head [7] || 0.40 | 0.22 | 98.4| 587 | 155 | 1.3 | 0.90

LSR [26] 059 | 0.13 | 45.7| 464 | 178 | 1.0 | 0.75
PIR [33] 0.71 | 0.12 | 57.2| 414 | 18.2 | 1.86| 0.94
Ours 066 | 0.11 | 350| 345 | 141 | 11 | 0.68

Table 1: Quantitative results on self-reenactment. The results are reported on the combin
original test set of VoxCelebl [27] and the test set released by [58]. For CSIM metric, highe
is better (), while in all other metrics lower is bettet)

Method CSIM | Pose| Exp.
X2Face [55] 057 | 22 | 15
FOMM [41] 073 | 7.7 | 2.0

Fast Bi-layer [59]|| 0.48 | 1.5 | 1.3
Neural-Head [7]|| 0.36 | 1.7 | 1.6

LSR [26] 050 | 1.4 | 1.2
PIR [33] 062 | 22 | 1.4
Ours 063 | 1.2 | 1.0

Table 2: Quantitative results on cross-subject reenactment. The results are reported on Z
video pairs from the test set of [58]. For CSIM metric, higher is bettgnghile in all other
metrics lower is better).

Qualitative comparisons: Unfortunately, quantitative comparisons alone are insuf cient to
capture the quality of reenactment. Hence, we opt for qualitative visual compairnsons-

tiple ways (@) results in Fig. 2, (b) in the supplementary material, we provide more results ir
self and cross-subject reenactment both on VoxCelebl and VoxCeleb2 datasets, and (c)
also provideall self-reenactment videos for the small test set of VoxCelebl (and VoxCeleb2
provided in [58] and cross-reenactment videogafdomly selecteddentities (providing

all possible pairs is not possible). As we can see from Fig. 2 and the videos provided in tf
supplementary material, our method provides, for the majority of videos, the highest reenac
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Figure 2: Qualitative results and comparisons for self (top three rows) and cross-sub
reenactment (last three rows) on VoxCelebl. The rst and second columns show the so
and target faces. Our method preserves the appearance and identity characteristics (e.c
shape) of the source face signi cantly better and also better captures ne-grained expres
details such as closed eye§{and 3" row).

ment quality including accurate transfer of pose and expression and, signi cantly enhan
identity preservation compared to all other methods. Importantly one great advantage of
method on cross-subject reenactment, as shown in Fig. 2, is that it is able to reenac
source face with minimal identity leakage (e.g facial shape) from the target face, in cont
to landmark-based methods such as Fast Bi-layer [59]. Finally, to show that our metho
able to generalise well on other facial video datasets, we provide additional results on
FaceForensics [36] and 300-VW [37] datasets in the supplementary material.

4.2 Ablation studies

We perform several ablation tests to (a) measure the impact of the identity and percer
losses, and the additional shape losses for the eyes and mouth, (b) validate our trained m
on synthetic, mixed and paired images, and (c) assess the use of optimizaBatuiing
inference. For (a), we perform experiments on synthetic images with and without the iden
and perceptual losses. To evaluate the models, we randomly geni€rpgers of synthetic
images (source and target) and reenact the source image with the pose and expressi
the target. As shown in Table 3, the incorporation of the identity and perceptual losse
crucial to isolate the latent space directions that strictly control the head pose and expres
characteristics without affecting the identity of the source face. In a similar fashion,
Table 3, we show the impact of the additional shape losses, namely the.gyand mouth
L mouthlosses. As shown, omitting these losses leads to higher pose and expression errc
For (b), we evaluate the three different training schemes, namely synthetic only (Sec



