A. Introduction

- SOTA methods for neural face reenactment train generative models to learn disentangled embeddings for identity and facial pose using paired data.
- The main challenges are: a) realistic image generation, b) identity preservation and c) faithful facial pose transfer.
- We present a novel method for face reenactment leveraging the high quality generation of a pretrained StyleGAN2 and the disentangled properties of a 3D shape model.
- Our method is able to create realistic facial images, and also faithfully transfer the target head pose and expression.

B. Preliminaries

1. We finetune StyleGAN2 (trained on FFHQ) on VoxCeleb dataset, which is more diverse in terms of head poses and expressions compared to FFHQ dataset.

2. We use a 3D shape model [2] to extract the 3D facial model \(s \) and the facial pose parameter \(p \) defined as:
 \[s = s_i + S_p p_i + S_e p_e, \quad p = [p_i, p_e] \]
 where \(p_i \), \(p_e \) are the identity and expression coefficients, and \(p_p \) the head orientation.

C. Goal

Learn the directions in the latent space of StyleGAN2 that control different facial attributes without altering the identity of the generated face.

We propose to associate a change \(\Delta p \) in the parameter space, with a change \(\Delta w \) in the intermediate latent space \(W^+ \).

D. Our method

- We train the matrix of directions \(A \), which takes as input the difference of facial pose parameters \(\Delta p \), and outputs a shift vector \(\Delta w \).
- The reenacted image is generated by shifting the source latent code using the predicted shift \(\Delta w \).

E. Inference

Given a source face and a target video:
1. We invert the source image to get the source latent code \(w_s \).
2. We finetune the generator to get a better reconstruction result [3].
3. We reenact the source face given a target pose.

F. Quantitative Results

<table>
<thead>
<tr>
<th>Method</th>
<th>CSIM</th>
<th>LPPR</th>
<th>PFD</th>
<th>FVD</th>
<th>NME</th>
<th>Pose</th>
<th>Exp.</th>
<th>CSIM</th>
<th>Pose</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>XFace [8]</td>
<td>0.70</td>
<td>0.33</td>
<td>30.5</td>
<td>35.5</td>
<td>12.5</td>
<td>1.1</td>
<td>0.98</td>
<td>0.80</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>FFoMM [5]</td>
<td>0.65</td>
<td>0.14</td>
<td>36.6</td>
<td>40.2</td>
<td>34.1</td>
<td>1.3</td>
<td>0.98</td>
<td>0.80</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Face2Blender [6]</td>
<td>0.64</td>
<td>0.22</td>
<td>32.8</td>
<td>36.4</td>
<td>13.2</td>
<td>1.1</td>
<td>0.85</td>
<td>0.81</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Neural-Head [7]</td>
<td>0.49</td>
<td>0.22</td>
<td>98.4</td>
<td>78.8</td>
<td>15.5</td>
<td>1.3</td>
<td>0.90</td>
<td>0.86</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>LSR [8]</td>
<td>0.59</td>
<td>0.13</td>
<td>45.7</td>
<td>40.4</td>
<td>17.8</td>
<td>1.0</td>
<td>0.75</td>
<td>0.50</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>PBR [9]</td>
<td>0.71</td>
<td>0.12</td>
<td>57.2</td>
<td>41.4</td>
<td>18.2</td>
<td>1.96</td>
<td>0.94</td>
<td>0.62</td>
<td>2.2</td>
<td>1.4</td>
</tr>
<tr>
<td>Ours</td>
<td>0.66</td>
<td>0.11</td>
<td>35.0</td>
<td>34.5</td>
<td>14.4</td>
<td>1.1</td>
<td>0.68</td>
<td>0.63</td>
<td>1.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

G. Qualitative Results (I)

Self reenactment: Source and target images have the same identity.

G. Qualitative Results (II)

Cross-subject reenactment: Source and target images have different identities.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>smile</td>
<td>yaw</td>
<td>pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Facial image editing: Only one facial attribute (yaw, pitch, smile etc.) is edited, without altering the identity and any other attribute of the source face (shown inside the red box).

[1] The et al., Designing an encoder for stylegan image manipulation. ACM TOG, 2021
[2] Feng et al., Learning an untangled detailed 3D face model from in-the-wild images. ACM TOG, 2021
[5] Feng et al., Learning an untangled detailed 3D face model from in-the-wild images. ACM TOG, 2021
[8] Calhoun et al., Fast-to-fine neural synthesis of high-resolution head avatars. ECCV, 2020
[9] Burkov et al., Neural head reenactment with latent pose descriptors. CVPR, 2020
[10] Menon et al., Learned spatial representations for few-shot talking head synthesis. ICCV, 2021