
MILES ET AL.: INFORMATION THEORETIC REPRESENTATION DISTILLATION 1

Information Theoretic Representation
Distillation

Roy Miles∗

r.miles18@imperial.ac.uk

Adrian Lopez-Rodriguez∗

al4415@imperial.ac.uk

Krystian Mikolajczyk
k.mikolajczyk@imperial.ac.uk

MatchLab
Imperial College London
Department of Electrical and Electronic
Engineering
London, UK

Abstract

Despite the empirical success of knowledge distillation, current state-of-the-art meth-
ods are computationally expensive to train, which makes them difficult to adopt in prac-
tice. To address this problem, we introduce two distinct complementary losses inspired
by a cheap entropy-like estimator. These losses aim to maximise the correlation and
mutual information between the student and teacher representations. Our method incurs
significantly less training overheads than other approaches and achieves competitive per-
formance to the state-of-the-art on the knowledge distillation and cross-model transfer
tasks. We further demonstrate the effectiveness of our method on a binary distillation
task, whereby it leads to a new state-of-the-art for binary quantisation and approaches
the performance of a full precision model. Code: github.com/roymiles/ITRD

1 Introduction
Deep learning has significantly advanced state-of-the-art across a wide range of computer
vision tasks. Despite this success, most models are too computationally expensive to de-
ploy on resource-constrained devices. Fortunately, the training of such models is coupled
with significant parameter redundancy, which has been explicitly exploited in the pruning
and quantisation literature [3, 19, 29, 60]. Knowledge distillation proposes an alternative
approach whereby a much larger pre-trained model can provide additional supervision for
a smaller model during training. This paradigm removes the restriction of the two models
to share the same underlying architecture, thus enabling hand-crafted designs of the target
architecture to meet the imposed resource constraints. However, some of the recent state-of-
the-art distillation methods, e.g. the recent union of self-supervision and knowledge distilla-
tion [45, 47], have made it increasingly expensive to train these student models. To this end,
we develop a distillation method with a low computational overhead.

Information theory provides a natural lens for quantifying the statistical relationship be-
tween these models, and so is a common framework for deriving distillation losses [5, 39].
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Figure 1: Information theoretic representation distillation (ITRD) involves two distinct
losses, namely a correlation loss and a mutual information loss. The former loss maximises
the correlation between the student and teacher, while the latter maximises a quantity resem-
bling the mutual information that aims to transfer the intra-batch sample similarity.

Hence, we propose Information Theoretic Representation Distillation (ITRD) as a unified
and computationally efficient framework that directly connects information theory with rep-
resentation distillation. Specifically, this framework is inspired by the generalised Rényi’s
entropy and makes the training for specific applications more effective. Rényi’s entropy is a
generalisation of Shannon’s entropy and has led to improvements in other areas [23, 36, 51].
As figure 1 shows, we propose to model the distillation task with two distinct loss functions
that correspond to maximising the correlation and mutual information between the student
and teacher representations. The correlation loss aims to increase the similarity between
teacher and student representations across the feature dimension. Conversely, the mutual
information loss aims to match the intra-batch sample similarity between the teacher and
the student. Our results show a strong accuracy v.s. training cost trade-off in comparison
to state-of-the-art across two standard benchmarks, CIFAR100 and ImageNet, for a range
of architecture pairings where we achieve up to 24.4% relative improvement. Our loss di-
rectly addresses the training efficiency problem, which we believe will encourage its adop-
tion amongst machine learning researchers and practitioners. We further demonstrate the
effectiveness of this framework on representation transfer, binary network transfer and NLP
architecture transfer, whereby we are able to improve upon the state-of-the-art for all tasks.

2 Related Work
Knowledge Distillation (KD) attempts to transfer the knowledge from a large pre-trained
model (teacher) to a much smaller compressed model (student). This was originally intro-
duced in the context of image classification [14], whereby the soft predictions of the teacher
can act as pseudo ground truth labels for the student. The soft predictions then provide
the student with supervision on the correlations between classes which are not explicitly
available from one-hot encoded ground truth labels. Spherical knowledge distillation [11]
proposes to re-scale the logits before KD to address the capacity gap problem, while Prime-
Aware Adaptive Distillation [58] introduces an adaptive sample weighting. Hinted losses
provide a natural extension of KD using an L2 distance between the student and teacher’s in-
termediate representation [31]. Attention transfer [55] proposed to re-weight the spatial en-
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tries before the matching losses, while neuron selectivity transfer [15], similarity-preserving
KD [41], and relational KD [24] attempt to transfer the structural similarity. Similarly, FSP
matrices [48] attempt to capture the flow of information and Review KD [6] propose the
use of attention-based and hierarchical context modules. KD can also be modelled directly
within a probabilistic framework [2, 25] through estimating and maximising the mutual in-
formation between the student and the teacher. ICKD [21] propose to transfer the correla-
tion between channels of intermediate representations. A natural extension of supervised
contrastive learning in the context of knowledge distillation was proposed in CRD [39].
WCoRD [5] also use a contrastive learning objective but through leveraging the dual and
primal forms of the Wasserstein distance. CRCD [59] further develop this contrastive frame-
work through the use of both feature and gradient information. Unfortunately, all of these
contrastive methods require a large set of negative samples, which are sampled from a mem-
ory bank that incurs in additional memory and computational costs, which we avoid alto-
gether.

Additional self-supervision tasks have shown strong performance when coupled with
representation distillation. Both SSKD [45] and HSAKD [47] introduce auxiliary tasks for
classifying image rotation. However, these added self-supervision tasks incur a high training
cost due to augmenting the training batches and adding additional classifiers. Weight shar-
ing through jointly training sub-networks has also been shown to provide implicit knowl-
edge distillation [22, 49, 50] and promising results. In this paper, we propose two distinct
distillation losses applied to the features before the final fully-connected layer. Similarly to
CRD [39], we posit that the logit representations lack relevant structural information that is
necessary for effective distillation through the low dimensional embedding, while using the
earlier intermediate representations can hinder the downstream task performance.

Information Theory (IT) provides a natural lens for interpreting and modelling the statisti-
cal relationships between intermediate representations of a neural network. This intersection
of information theory and deep learning has subsequently led to a rigorous foundation in
understanding the dynamics of training [1, 40], while offering fruitful insights into other
application domains, such as network pruning and knowledge distillation. In the context of
representation distillation, most losses can be modelled as maximising some lower bound
on the mutual information between the student and the teacher [5, 39]. In this work, we
propose to forge an alternative connection between knowledge distillation and information
theory using infinitely divisible kernels [4]. Specifically, we show that maximising both the
correlation and mutual information yields two complimentary loss functions that can be re-
lated to these entropy-like quantities. We achieve this using a matrix-based function that
closely resembles Rényi’s α-entropy [33, 34, 44], which is in turn a natural extension of the
well-known Shannon’s entropy used in IT. More recently, this work has been applied in a
representation learning context [53] for parameterising the information bottleneck principle.

3 Preliminaries
Representation Distillation describes the methods that use the representation space that is
given as the input to the final fully connected layer of a model. The generalised loss used for
representation distillation can be concisely expressed in the following form:

L=LXE(y,softmax(ys))+β ·d(zs,zt) (1)
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where zs ∈ IRds and zt ∈ IRdt are the student and teacher representations, β is a loss weight-
ing, and d is the distillation loss function. The cross entropy LXE between labels y and
student logits ys can be defined as the sum of an entropy and KL divergence term. Further-
more, standard KD [13] uses a further KL divergence as the distillation loss between the
student and teacher logits, with a temperature term to soften or sharpen the two distributions.

Following [39], the motivation for using the feature representation space, as opposed to
logits or any of the intermediate feature maps is two-fold. Firstly, this space preserves the
structural information about the input, which may be lost in the logits. Secondly, intermedi-
ate feature matching losses may negatively impact the students’ downstream performance in
the cross-architecture tasks due to differing inductive biases [39], while also incurring signif-
icant computational and memory overheads due to the high dimensionality of these feature
maps. In our work, to maximize the information transfer, we propose to express the distilla-
tion loss d(., .) as the weighted sum of a correlation and mutual information term. Below we
link these two terms to a general formulation of entropy [34].

Information Theory Rényi’s α-entropy [30] provides a natural extension of Shannon’s
entropy, which has been successfully applied in the context of differential privacy [23], un-
derstanding autoencoders [51], and face recognition [36]. For a random variable X with
probability density function (PDF) f (x) in a finite set χ , the α-entropy Hα(X) is defined as:

Hα( f ) =
1

1−α
log2

∫
χ

f α(x)dx (2)

Where the limit as α → 1 is the well-known Shannon entropy. To avoid the need for eval-
uating the underlying probability distributions, a set of entropy-like quantities that closely
resemble Renyi’s entropy were proposed in [34, 44] and instead estimate these information
quantities directly from data. They are based on the theory of infinitely divisible matrices
and leverage the representational power of reproducing kernel Hilbert spaces (RKHS), which
have been widely studied and adopted in classical machine learning. Since its fruition, this
framework has been applied in understanding convolutional neural networks (CNNs) [52],
whereby they verify the important data processing inequality in information theory and fur-
ther demonstrate a redundancy-synergy trade-off in layer representations. We propose to
apply these estimators in the context of representation distillation.

We now provide definitions of the entropy-based quantities and their connections with
positive semidefinite matrices. This idea then leads to a multi-variate extension using Hadamard
products, from which conditional and mutual information can be defined. For brevity, we
omit the proofs and connections with Rényi’s axioms, which can be found in [34, 44].

Definition 1: Let X = {x(1), . . .x(n)} be a set of n data points of dimension d and κ :
X ×X → IR be a real-valued positive definite kernel. The Gram matrix K is obtained from
evaluating κ on all pairs of examples, that is Ki j = κ(xi,x j). The matrix-based analogue to
Rényi’s α-entropy for a normalized positive definite (NPD) matrix A of size n×n, such that
tr(A) = 1, can be given by the following functional:

Sα(A) =
1

1−α
log2(tr(A

α)) =
1

1−α
log2

[
n

∑
i=1

λi(Aα)

]
(3)

where A is the kernel matrix K normalised to have a trace of 1 and λi(A) denotes its i-th
eigenvalue. This estimator can be seen as a statistic on the space computed by the kernel κ ,
while also satisfying useful properties attributed to entropy. In practice, the choice of both
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κ and α can be governed by domain-specific knowledge, which we exploit for the task of
knowledge distillation. The log in these definitions, conventionally taken as base 2, can be
interpreted as a data-dependant transformation, and its argument is called the information
potential [33]. In an optimisation context, the information potential and entropy definitions
can be used interchangeably since they are related by a strictly monotonic function.

We are interested in the statistical relationship between two sets of variables, namely the
student and teacher representations. To measure this relationship, we introduce the notion of
joint entropy, which naturally arises using the product kernel.

Definition 2: Let X and Y be two sets of data points. After computing the corresponding
Gram matrices A and B, the joint entropy is then given by:

Sα(A,B) = Sα

(
A◦B

tr(A◦B)

)
(4)

where ◦ denotes the Hadamard product between two matrices. Using these two definitions,
the notion of conditional entropy and mutual information can be derived. We focus on the
mutual information, which is given by:

Iα(A;B) = Sα(A)+Sα(B)−Sα(A,B) (5)

Both equation 4 and 5 form a foundation for the correlation and mutual information losses
respectively, which are proposed in the following section.

4 Information Theoretic Loss Functions
In this section we introduce two distillation losses that use two distinct and complementary
similarity measures between the student and teacher representations. The first loss uses a
correlation measure which captures the similarity across the feature dimension, while the
second loss is derived from a measure of mutual information and captures the similarity
between examples within the mini-batch.

4.1 Maximising correlation
This first loss attempts to correlate the student and teacher representations. The intuition is
that if the two sets of representations are perfectly correlated then the student is at least as
discriminative as the teacher. Let Zs ∈ IRn×d and Zt ∈ IRn×d 1 denote a batch of representa-
tions from the student and teacher respectively. These matrices are computed before the final
fully-connected layer to preserve the structural information of the data, thus enabling a strong
distillation signal for the student. We first normalise these representations to zero mean and
unit variance across the batch dimension and then propose to construct a cross-correlation
matrix, Cst = ZT

s Zt/n ∈ IRd×d . Perfect correlation between the two sets of representations
is achieved if all of the diagonal entries vi = (Cst)ii are equal to one. To formulate this as a
minimization problem, we propose the following loss:

Lcorr = log2

d

∑
i=1

|vi −1|2α (6)

1For clarity, we omit a linear embedding layer used on the student representations to match its dimensionality
with the teacher.
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This general objective is motivated by the recent work on Barlow Twins [56] for self-
supervised learning, however, there are several distinct differences. Firstly, we drop the
redundancy reduction term, which minimizes the off-diagonal entries in the cross correla-
tion matrix, since we are not jointly learning both representations, i.e., the teacher is fixed.
In fact we observed that this objective significantly hurts the performance of the student.
This performance degradation was similarly observed when decorrelating the off-diagonal
entries in the self-correlation matrix Css, and is likely a consequence of the limited model
capacity. Secondly, we introduce an α parameter, which provides a natural generalisation
to emphasise low or highly correlated features. Finally, the log2 transformation was em-
pirically shown to improve the performance by reducing spurious variations within a batch.
These modifications were not only empirically justified, but also provide a closer relationship
with the matrix-based entropy function in equation 3 (see Supplementary).

4.2 Maximising mutual information
The correlation loss aims to match the information present in each feature dimension be-
tween the teacher and student representations. The mutual information loss provides an
additional complimentary objective whereby we transfer the intra-batch similarity (i.e., the
relationship between samples) from the teacher representations to the student representa-
tions. The natural choice for achieving this through the lens of information theory is to
maximise the mutual information between the two representations. Maximising the mutual
information has been successfully applied in past distillation methods [2], following the idea
that a high mutual information indicates a high dependence between the two models and
thus resulting in a strong student representation. Most other works relate their distillation
losses to some lower bound on mutual information [39], however, using an alternative cheap
entropy-like estimator, we propose to maximise this quantity directly:

Lmi =−Iα(Gs;Gt) = Sα(Gs,Gt)−Sα(Gs)−����Sα(Gt) (7)

where Gs ∈ IRn×n and Gt ∈ IRn×n are the student and teacher Gram matrices (i.e., A and B
in equation 5). These matrices are constructed using a batch of normalised features Zs and
Zt with a polynomial kernel of degree 1. The resulting matrix is subsequently normalised
to have a trace of one. The teacher entropy term in this loss is omitted since the teacher
weights are fixed during training. Substituting the marginal and joint entropy definitions
from equations 3 and 4, with Gst = Gs ◦Gt (normalised to have a trace of one), leads to

Lmi =
1

1−α
log2

n

∑
i=1

λi (Gα
st)−

1
1−α

log2

n

∑
i=1

λi (Gα
s ) (8)

Where Gst is also normalised to have unit trace. Since computing the eigenvalues for lots
of large matrices can be computationally expensive during training [16], we restrict our
attention to α = 2. This allows us to use the Frobenius norm as a proxy objective and
one of which has a connection with the eigenspectrum - ∥AF∥2 = tr(AAH) = ∑

n
i=1 λi(A2)

since A is symmetric.

Lmi = log2 ∥Gs∥2
F − log2 ∥Gst∥2

F (9)

In practice, we observed that removing the log transformations improved the performance,
thus resulting in a slight departure from the connection to mutual information. Specifically,
the loss instead minimises the distance between the marginal and joint information potential,
rather than the mutual information (see Supplementary).
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4.3 Combining correlation and mutual information

Both the proposed losses provide two different learning objectives. Maximising the correla-
tion is applied across the feature dimension, thus ensuring that the students average represen-
tation across the batch is perfectly correlated with the teacher. On the other hand, maximising
the mutual information encourages the same similarity between samples as from the teacher.
These two losses operate distinctly over the two dimensions of the representations, namely
the feature-dim and the batch-dim. The final loss we aim to minimise is given as follows:

LIT RD = LXE +βcorrLcorr +βmiLmi (10)

where LXE is a cross-entropy loss, while βcorr and βmi are hyperparameters to weight the
losses. To demonstrate the simplicity of our proposed method, and similarly to past works
[56], we provide the PyTorch-based pseudocode in algorithm 1.

1: # f_s: Student network
2: # f_t: Teacher network
3: # y: Ground-truth labels
4: # y_s, y_t: Student and teacher logits
5: # z_s, z_t: Student and teacher representations (n x d)
6: for x in loader:
7: # Forward pass
8: z_s, y_s = f_s(x)
9: z_t, y_t = f_t(x)

10: z_s = embed(z_s)
11: # Cross entropy loss
12: loss = cross_entropy(y_s, y)
13:

14: # Normalise representations
15: z_s_norm = (z_s - z_s.mean(0)) / z_s.std(0)
16: z_t_norm = (z_t - z_t.mean(0)) / z_t.std(0)
17: # Compute cross-correlation vector
18: v = einsum(’bx,bx→x’, z_s, z_t) / n
19: # Compute correlation loss
20: dist = torch.pow(v - torch.ones_like(v), 2)
21: h_st = torch.log2(torch.pow(dist, alpha).sum())
22: loss += h_st.mul(beta_corr)
23:

24: # Compute Gram matrices
25: z_s_norm = normalize(z_s, p=2)
26: z_t_norm = normalize(z_t, p=2)
27: g_s = einsum(’bx,dx→bd’, z_s_norm, z_s_norm)
28: g_t = einsum(’bx,dx→bd’, z_t_norm, z_t_norm)
29: g_st = g_s * g_t
30: # Normalize Gram matrices
31: g_s = g_s / torch.trace(g_s)
32: g_st = g_st / torch.trace(g_st)
33: # Compute the mutual information loss
34: p = g_s.pow(2) - g_st.pow(2)
35: loss += p.sum().mul(beta_mi)
36:

37: # Optimisation step
38: loss.backward()
39: optimizer.step()

Algorithm 1: PyTorch-style pseudocode for ITRD
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Teacher W40-2 W40-2 R56 R110 R110 R32x4 V13 V13 R50 R50 R32x4 R32x4 W40-2
Student W16-2 W40-1 R20 R20 R32 R8x4 V8 MN2 MN2 V8 SN1 SN2 SN1

Teacher 75.61 75.61 72.32 74.31 74.31 79.42 74.64 74.64 79.34 79.34 79.42 79.42 75.61
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36 64.60 64.60 70.36 70.50 71.82 70.50

KD [14] 74.92 73.54 70.66 70.67 73.08 73.33 72.98 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [31] 73.58 72.24 69.21 68.99 71.06 73.50 71.02 64.14 63.16 70.69 73.59 73.54 73.73

AT [55] 74.08 72.77 70.55 70.22 72.31 73.44 71.43 59.40 58.58 71.84 71.73 72.73 73.32
SP [41] 73.83 72.43 69.67 70.04 72.69 72.94 72.68 66.30 68.08 73.34 73.48 74.56 74.52
CC [26] 73.56 72.21 69.63 69.48 71.48 72.97 70.71 64.86 65.43 70.25 71.14 71.29 71.38

RKD [24] 73.35 72.22 69.61 69.25 71.82 71.90 71.48 64.52 64.43 71.50 72.28 73.21 72.21
PKT [25] 74.54 73.45 70.34 70.25 72.61 73.64 72.88 67.13 66.52 73.01 74.10 74.69 73.89
FT [17] 73.25 71.59 69.84 70.22 72.37 72.86 70.58 61.78 60.99 70.29 71.75 72.50 72.03

NST [15] 73.68 72.24 69.60 69.53 71.96 73.30 71.53 58.16 64.96 71.28 74.12 74.68 74.89
CRD [39] 75.64 74.38 71.63 71.56 73.75 75.46 74.29 69.94 69.54 74.58 75.12 76.05 76.27

WCoRD [5] 76.11 74.72 71.92 71.88 74.20 76.15 74.72 70.02 70.12 74.68 75.77 76.48 76.68
ReviewKD [6] 76.12 75.09 71.89 - 73.89 75.63 74.84 70.37 69.89 - 77.45 77.78 77.14

Lcorr 75.85
±0.12

74.90
±0.29

71.45
±0.21

71.77
±0.34

74.02
±0.27

75.63
±0.09

74.70
±0.27

69.97
±0.33

71.41
±0.41

75.71
±0.02

76.80
±0.28

77.27
±0.25

77.35
±0.25

Lcorr +Lmi 76.12
±0.04

75.18
±0.22

71.47
±0.07

71.99
±0.46

74.26
±0.05

76.19
±0.22

74.93
±0.12

70.39
±0.39

71.34
±0.33

75.49
±0.32

76.91
±0.19

77.40
±0.06

77.09
±0.08

Table 1: CIFAR-100 test accuracy (%) of student networks trained with a number of distil-
lation methods. The best results are highlighted in bold, while the second best results are
underlined. The mean and standard deviation was estimated over 3 runs. Same-architecture
transfer experiments are highlighted in blue, whereas cross-architectural transfer is shown in
red.

5 Experiments
We evaluate our proposed distillation across two standard benchmarks, namely the CIFAR-
100 and ImageNet datasets. To further demonstrate the effectiveness of our loss, we perform
additional experiments on the transferability of the students representations (see Supple-
mentary), distilling from a full-precision model to a binary network, and on an NLP reading
comprehension task. For all of these experiments, we jointly train the student model with an
additional linear embedding for the student representation. This embedding is used for the
correlation loss and is shared by the mutual information loss when there is a mismatch in
dimensions between the student and the teacher.

5.1 Model compression
Experiments on CIFAR-100 classification [18] consist of 60K 32×32 RGB images across
100 classes with a 5:1 training/testing split. The results are shown in table 1 for multiple
student-teacher pairs. For a fair comparison, we include those methods that use the standard
CRD [39] teacher weights. The model abbreviations in the results table are given as follows:
Wide residual networks (WRNd-w) [54], MobileNetV2 [10] (MN2), ShuffleNetV1 [57] /
ShuffleNetV2 [38] (SN1 / SN2), and VGG13 / VGG8 [37] (V13 / V8). R32x4, R8x4, R110,
R56 and R20 denote CIFAR-style residual networks, while R50 denotes an ImageNet-style
ResNet50 [12]. CRCD [59] is not shown in table 1 since it uses different and not publicly
available teacher weights2. Although both SSKD and HSAKD do provide official imple-
mentations and teacher weights, their use of self-supervision and additional auxiliary tasks
is much more computationally expensive and orthogonal to our work. However, we do in-
clude these methods in the ImageNet experiment since the same teacher weights are used.

2In addition, using the unofficial code released by the authors, we were unable to replicate their reported results.

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Romero, Ballas, Ebrahimiprotect unhbox voidb@x protect penalty @M  {}Kahou, Chassang, Gatta, and Bengio} 2015

Citation
Citation
{Zagoruyko and Komodakis} 2019

Citation
Citation
{Tung and Mori} 2019

Citation
Citation
{Peng, Jin, Li, Zhou, Wu, Liu, Zhang, and Liu} 2019

Citation
Citation
{Park, Corp, Kim, and Lu} 2019

Citation
Citation
{Passalis and Tefas} 2018

Citation
Citation
{Kim, Park, and Kwak} 2018

Citation
Citation
{Huang and Wang} 2017

Citation
Citation
{Tian, Krishnan, and Isola} 2019

Citation
Citation
{Chen, Wang, Gan, Liu, Henao, and Carin} 2020

Citation
Citation
{Chen, Liu, Zhao, and Jia} 

Citation
Citation
{Krizhevsky} 2009

Citation
Citation
{Tian, Krishnan, and Isola} 2019

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Fox, Kim, and Ehrenkrantz} 2018

Citation
Citation
{Zhang, Zhou, and Lin} 2018

Citation
Citation
{Tan, Chen, Pang, Vasudevan, Sandler, Howard, and Le} 2018

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Zhu, Tang, Chen, and Yu} 



MILES ET AL.: INFORMATION THEORETIC REPRESENTATION DISTILLATION 9

v.s. ReviewKD WCoRD Lcorr

Lcorr -3.7% +16.2% -
Lcorr +Lmi +6.8% +24.4% +10.5%

Table 2: Relative performance improvement (averaged over all architecture pairs in table 1)
of the correlation and mutual information losses against ReviewKD, WCoRD and Lcorr only.

Figure 2: Top-1 Accuracy on ImageNet vs training efficiency with a ResNet-18 as the student
and a pre-trained ResNet-34 as the teacher. For CRCD, the training efficiency was evaluated
using the authors unofficial implementation, while the accuracy is reported in their paper.

For all experiments in table 1, we set βcorr = 2.0 and βmi = 1.0 (or βmi = 0.0 when only
using Lcorr). For the correlation loss α , we use a value of 1.01 for the same architectures
and 1.50 for the cross-architectures. ITRD achieves the best performance for 10 out of 13
of the architecture pairs, with a 6.8% and 24.4% relative improvement3 over ReviewKD
and WCoRD respectively. The addition of Lmi is also shown to complement the Lcorr loss
through a 10.5% average relative improvement over all pairs, as shown in table 2.
Experiments on ImageNet classification [32] involve 1.3 million images from 1000 differ-
ent classes. In this experiment, we set the input size to 224× 224, and follow a standard
augmentation pipeline of cropping, random aspect ratio and horizontal flipping. We use the
torchdistill library with standard settings, i.e., 100 epochs of training using SGD with an ini-
tial learning rate of 0.1 that is divided by 10 at epochs 30, 60 and 90. The results are shown
in figure 2 against the total training efficiency, which is measured in img/s and is inversely
proportional to the total training time. This metric is evaluated using the official torchdistill
implementations where possible. In the case of HSAKD, we used their official implemen-
tation and for CRCD we used the unofficial implementation provided by the authors. For
a fair comparison, the batch sizes were scaled to ensure the training would fit within a pre-
determined memory constraint of 8GB, and we used for training an RTX 2080Ti GPU.

In terms of accuracy, ITRD achieves an error of 28.32%, being only behind CRCD and
HSAKD, which are much more computationally costly through the use of either negative
contrastive sampling and a gradient-based loss, or additional augmented training data. Con-
versely, ITRD is computationally efficient, with only a small overhead coming from a single
linear layer that embeds the student and teacher representations to the same space, and from

3For clarity, we use the same definition for relative improvement as provided in WCoRD [5]. This is given by
X−Y

X−KD , where the X method is compared to Y relative to standard KD with KL divergence.

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, and Fei-Fei} 2014

Citation
Citation
{Chen, Wang, Gan, Liu, Henao, and Carin} 2020



10 MILES ET AL.: INFORMATION THEORETIC REPRESENTATION DISTILLATION

Network Method Top-1 (%)

ResNet-18 Full Precision 94.8
RAD [8] 90.5

IR-Net [27] 91.5
RBNN [20] 92.2
ReCU [46] 92.8

ReCU + CRD 92.1
ReCU + ReviewKD 92.6

ReCU + KD 93.3
ReCU +Lcorr 93.9

ReCU +Lcorr +Lmi 94.1

Model EM F1

Teacher (BERT) 81.5 88.6

T
6

DistilBERT 79.1 86.9
TextBrewer 80.8 88.1

ITRD 81.5 88.5

T
3 TextBrewer 76.3 84.8

ITRD 77.7 85.8

Table 3: Left: Binary Network classification on CIFAR-10. Right: Question Answering on
SQuAD 1.1. The teacher architecture, BERT, contains 12 layers, whereas the students, T6
and T3, follow the same architecture as BERT but with 6 and 3 layers respectively.

computing the gram and cross-correlation matrices. The results show the applicability of
ITRD to large-scale datasets, while being significantly more efficient and simple to adopt.
Binary neural networks (BNNs) [8, 20, 27, 46] are an extreme case of quantisation, where
the weights can only represent two values. BNNs can obtain a significant model size re-
duction and increase of inference speed on CPUs [29] and FPGAs [42], with only a small
drop in accuracy. We now show that ITRD can be used to reduce the gap between binary
and full-precision (FP) networks. We use the state-of-the-art method ReCU [46] as our base
model, and we distill the information from a FP teacher to our BNN student, which share
the same architecture apart from the quantisation modules in the student. Table 3 shows the
results, where for all distillation methods we used the same hyperparameters as in the previ-
ous experiments. Both CRD and ReviewKD degrade the BNN performance and, in contrast,
ITRD improves upon the original ReCU by 1.3%, which is only 0.7% shy of the FP model.
NLP Question Answering. To show the wide applicability of our method, Table 3 shows
the results of ITRD in a distillation task on the SQuAD 1.1 [28] reading comprehension task,
using the transformer-based [43] BERT [7] as a teacher and modified versions of BERT with
fewer layers as the students. For this experiment, we use the same hyperparameters used in
the previous experiments, and following TextBrewer we apply ITRD to the output of each of
the student transformer layers, and also use a standard KD [13] loss between the teacher and
students logits. Table 3 shows that we outperform both NLP-specific distillation methods
TextBrewer [9] and DistilBert [35] in both the Exact Match (EM) metrics and in F1 score.

6 Conclusion
In this work, we proposed an information-theoretic setting for representation distillation.
Using this framework, we introduce novel distillation losses that are very simple and com-
putationally inexpensive to adopt into most deep learning pipelines. Each of the proposed
losses aims to extract complementary information from the teacher network. The correlation
loss guides the student to match the teacher representation on a feature level. Conversely,
the mutual information loss transfers the intra-batch similarity between samples from the
teacher to the student. We have shown the superiority of our approach compared to methods
of similar computational costs on standard classification benchmarks. Furthermore, we have
shown the wide applicability of our method by reducing the gap between full-precision and
binary networks, and also improving upon NLP-specific distillation methods.
Acknowledgement. This research was supported by UK EPSRC project EP/S032398/1.
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