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1 Mutual Information Loss

Information potential The log transformation must be used in both the marginal and joint
entropy terms to be a valid measure of mutual information. Without it, the loss resembles a
distance between these quantities, rather than a ratio. However, empirically, we observed a
small degradation in accuracy when using the log in both these terms, which can be seen in
table 1.

Lmi Gs −Gst log2(Gs)− log2(Gst)

Mean 71.52 71.36
Std 0.25 0.35

Table 1: Accuracy (%) with and without the log2 data transformation. The experiments were
performed for CIFAR-100 ResNet50→ MobileNetV2 distillation.

Exploring different kernels κ The kernel used for the Lmi loss was a polynomial kernel
of degree 2, however, we also considered the use of a radial basis function (RBF) kernel

κ(xi,x j) = exp
(
− ∥xi−x j∥2

2σ2

)
. To select the values of σ , we then used Silverman’s rule of

thumb [19] σ = h×n−1/(4+d), where n is the size of the mini-batch, d is the dimensionality
of the representations, while h is an empirical value. The results can be seen in table 2
for both h = 1.0, h = 5.0, and the polynomial kernel. Although the RBF kernel did show
promising results, the value of h is very dependant on both the dataset and the architectures
used. To promote reproducibility of our results, we thus chose to use the polynomial kernel
throughout.
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κ Polynomial RBF (σ ≈ 1.0) RBF (σ ≈ 5.0)

Mean 71.52 71.14 70.99
Std 0.25 0.18 0.08

Table 2: Accuracy (%) with the RBF kernel for the Lmi with different kernel sizes σ . The
experiments were performed for CIFAR-100 ResNet50→ MobileNetV2 distillation.

2 Correlation Loss

Relationship to joint entropy. The objective from equation 6 closely resembles maximis-
ing log2 ∑i vi. However, although these two objectives share the same optimum solution,
the flexibility in tuning the sharpness of the loss with α proved very effective. If we con-
sider the self correlation matrices Css and Ctt , the diagonal entries in (Css ◦Ctt)

2 1 will be
populated with products of pairs of cross-correlation terms between Zs and Zt . This matrix
construction can then be used in equation 4 to compute the joint α-order entropy between
the student and the teacher, where α = 2. In the case where the features are strictly indepen-
dent, i.e., (Css)i j = (Ctt)i j = 0 ∀ i ̸= j, the objective of the proposed loss in equation 6 and
maximising this joint entropy are equivalent. In the more general setting, the joint entropy
formulation maximises the correlation between all pairs of exemplars, while our proposed
loss only maximises the correlation along the leading diagonal of Cst .

Correlation v.s. Gram matrices. The connection to joint entropy is limited in that the
matrices used are correlation matrices as opposed to Gram matrices in equation 4. This is an
important distinction since in this loss we wish to capture the similarity across the feature-
dimension as opposed to the batch-dimension. However, despite this distinction, there is
still an intimate connection between these two matrices. As discussed in the recent work
on cross-covariance attention [5], the non-zero part of the eigenspectrum of the Gram and
covariance matrices are equivalent. Since the entropy-like formulation described in equation
3 is a spectral function of A, the two resulting quantities are in turn closely related.

3 Additional experiments

Transferability of representations The main task of representation distillation is to train
a smaller model to learn general and discriminative representations of the data. To confirm
this result, we explore the task of transferring these models to two different datasets, namely
Tiny ImageNet [24], and STL-10 [4]. Tiny ImageNet is a subset of ImageNet that contains
200 classes, with 500 training and 50 validation images per class each of size 64×64. On the
other hand, STL-10 contains 10 classes, with 500 training and 800 testing images per class
each of size 32× 32. A WRN-16-2 student is first trained using ITRD from a WRN-40-2
teacher on the CIFAR100 dataset, after which the representation extractor is frozen and a
new linear classifier is fine-tuned on the target data. The results are shown in table 3 and
show that ITRD outperforms CRD+KD.

1This exponent denotes the square of a matrix, rather than an element-wise operation.
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Student KD AT FitNet CRD CRD+KD ITRD Teacher

CIFAR100 → STL-10 69.7 70.9 70.7 70.3 71.6 72.2 72.7 68.6
CIFAR100 → TinyImageNet 33.7 33.9 34.2 33.5 35.6 35.5 36.0 31.5

Table 3: Transferability of the representations from CIFAR-100 to STL-10 and TinyIma-
geNet. Only the linear classifier heads of each model are fine-tuned on the target datasets.
The top-1 classification accuracies are reported (%).

Ablation study is performed for the impact of the weightings in the loss, namely βcorr and
βmi. The experiments were performed on CIFAR100 with a ResNet50 for the teacher and a
MobileNetV2 for the student. The results are given in figure 1 and show that the student’s
performance is relatively robust to a wide range of values. For the βmi weighting, the average
loss maintains within 0.5% and a similar level of variation is achieved for βcorr ∈ [1.5,2.5].
We further provide some insight into the choice of α for the correlation loss. Specifically,
we evaluate the students performance when trained using a range of values for α , of which
the results can be seen in table 4. The same dataset and student-teacher architecture are
used from the previous ablation experiments. The best results are achieved with α = 2.0,
which demonstrates the benefit of incorporating Rényi’s generalisation for entropy into the
proposed losses.

Figure 1: Accuracy (%) when varying both the correlation loss (left) and mutual information
loss (right) weightings.

α 1.01 1.5 2.0 3.0 4.0 5.0 10.0

Mean 71.15 71.34 71.42 71.32 71.22 70.41 62.91
Std 0.21 0.33 0.39 0.16 0.06 0.43 1.21

Table 4: Accuracy (%) when varying α in the correlation loss for CIFAR-100 ResNet50→
MobileNetV2 distillation.

4 Discussion
Reproducibility To aid the reproducibility of this work, we implemented ITRD in both
the CRD evaluation framework [21] and the torchdistill [14] KD reproducibility framework,
which will both be released. Furthermore, the pseudo-code in algorithm ?? encapsulates
both losses, showing the simplicity of using the proposed losses in current KD settings. We
hope that the release of the code, along with the computational simplicity of our approach
will encourage further development of this work.
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5 Baseline Methods and Model Architectures

5.1 Baseline Methods
• Fitnets: Hints for thin deep nets [18]

• Knowledge Distillation (KD) [10]

• Attention Transfer (AT) [27]

• Like what you like: Knowledge distillation via neuron selectivity transfer (NST) [11]

• A gift from knowledge distillation: fast optimization, network minimization and trans-
fer learning (FSP) [25]

• Learning deep representations with probabilistic knowledge transfer (PKT) [16]

• Paraphrasing complex network: network compression via factor transfer (FT) [12]

• Similarity-preserving knowledge distillation (SP) [22]

• Correlation congruence (CC) [17]

• Variational information distillation for knowledge transfer (VID) [1]

• Relational knowledge distillation (RKD) [15]

• Knowledge transfer via distillation of activation bound- aries formed by hidden neu-
rons (AB) [9]

• Contrastive representation distillation (CRD) [21] via NCE [7].

• Wasserstein Contrastive Representation Distillation (WCoRD) [2]

• Distilling Knowledge via Knowledge Review (ReviewKD) [3]

• Complementary Relation Contrastive Distillation (CRCD) [29]

Note that the hyper-parameter setup for these baseline methods follows the setup in CRD [21].

5.2 Model Architectures
In experiments, we utilize the following model architectures.

• Wide Residual Network (WRN) [26]: WRN-d-w represents wide ResNet with depth
d and width factor w.

• resnet [8]: We use ResNet-d to represent CIFAR-style resnet with 3 groups of basic
blocks, each with 16, 32, and 64 channels, respectively. In our experiments, resnet8x4
and resnet32x4 indicate a 4 times wider net- work (namely, with 64, 128, and 256
channels for each of the blocks).

• ResNet [8]: ResNet-d represents ImageNet-style ResNet with bottleneck blocks and
more channels.

Citation
Citation
{Romero, Ballas, Ebrahimiprotect unhbox voidb@x protect penalty @M  {}Kahou, Chassang, Gatta, and Bengio} 2015

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Zagoruyko and Komodakis} 2019

Citation
Citation
{Huang and Wang} 2017

Citation
Citation
{Yim} 2017

Citation
Citation
{Passalis and Tefas} 2018

Citation
Citation
{Kim, Park, and Kwak} 2018

Citation
Citation
{Tung and Mori} 2019

Citation
Citation
{Peng, Jin, Li, Zhou, Wu, Liu, Zhang, and Liu} 2019

Citation
Citation
{Ahn, Hu, Damianou, Lawrence, and Dai} 2019

Citation
Citation
{Park, Corp, Kim, and Lu} 2019

Citation
Citation
{Heo, Lee, Yun, and Choi} 2019

Citation
Citation
{Tian, Krishnan, and Isola} 2019

Citation
Citation
{Gutmann and Hyv{ä}rinen} 

Citation
Citation
{Chen, Wang, Gan, Liu, Henao, and Carin} 2020

Citation
Citation
{Chen, Liu, Zhao, and Jia} 

Citation
Citation
{Zhu, Tang, Chen, and Yu} 

Citation
Citation
{Tian, Krishnan, and Isola} 2019

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2015



MILES ET AL.: INFORMATION THEORETIC REPRESENTATION DISTILLATION 5

• MobileNetV2 [6]: In our experiments, we use a width multiplier of 0.5.

• vgg [20]: The vgg networks used in our experiments are adapted from their original
ImageNet counterpart.

• ShuffleNetV1 [28], ShuffleNetV2 [13]: ShuffleNets are proposed for efficient training
and we adapt them to input of size 32x32.

5.3 Implementation Details
The CIFAR100 experimental evaluation and architectures used for comparisons are provided
by Tian et al. in their work on contrastive representation distillation [21]. For the ImageNet
experiments, we use the torchdistill [14] reproducibility framework, and for the binary dis-
tillation experiments we use the code provided by ReCU [23]. For completeness, we include
the detail of the CRD provided architectures and training schedules here:

All methods evaluated in our experiments use SGD. For CIFAR-100, we initialize the
learning rate as 0.05, and decay it by 0.1 every 30 epochs after the first 150 epochs until the
last 240 epoch. For MobileNetV2, ShuffleNetV1 and ShuffleNetV2, we use a learning rate
of 0.01 as this learning rate is optimal for these models in a grid search, while 0.05 is optimal
for other models.

6 Training costs
Figure 2 in the main paper provides the ImageNet training costs with the same hardware and
a fixed memory constraint, where ITRD is relatively on par with the cheap standard KD.
Table 5 shows additional results on the memory overhead for a fixed batch-size. In addition
to these metrics, for the R34 → R18 ImageNet comparison, ITRD adds only 0.26M trainable
parameters by using a linear embedding layer, whereas e.g., ReviewKD introduces 1.8M and
CRD/WCoRD use a memory bank that stores tens of millions of parameters.

v.s. ReviewKD CRCD HSAKD

Memory 4.08× over GPU (24GB) limit 5.61×
Train time 2.22× 4.00× 31.06×

Table 5: Relative overhead in terms of memory and training time against main competing
distillation methods on ImageNet. Training time used a variable batch size to fit a pre-defined
memory limit, while the memory experiments were using a fixed batch size.

Training convergence. Our method achieves a fast convergence, thus training with fewer
epochs may lead to similar results to using the full training schedule. As shown in figure 2,
ITRD achieves a higher final accuracy and also converges much faster after each learning
rate drop than two of the main competitors (i.e., CRD and KD).

7 Hyper-parameters fine-tuning
The proposed ITRD framework does not use any KL divergence for the logits. This would
need additional tuning of α and τ , where τ is often very dataset dependent. Lots of other
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Figure 2: Training epochs vs validation accuracy for VGG13→VGG8 CIFAR 100 distilla-
tion. Zoomed-in regions show that our method converges faster to a higher accuracy.

methods report their results in conjunction with the KL loss [2, 21]. In addition, these
methods also contain extra hyperparameters that need to be carefully tuned. For example,
WCoRD[2] shows a robustness over a very small range 0 < λ2 < 0.2, while we provide a
much larger range of values tested for our hyperparameters (βcorr, βmi, α) whilst providing a
comparable, or strictly lower, variation of performance. Similarly, CRD performance is also
highly dependent on the number of negative samples used or the temperature chosen. Fur-
thermore, we also use the same hyper-parameters used in the paper for the NLP experiments,
thus demonstrating the robustness to the choice of hyperparameters.
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