A Memory Transformer Network for Incremental Learning

Ahmet Iscen, Thomas Bird, Mathilde Caron, Alireza Fathi, Cordelia Schmid

67.4 68.9 71.2 54.1 55.5 57.6

Motivation

- Catastrophic forgetting Incremental Learning (IL) model sees tasks . sequentially, cannot store all the data.
- Rehearsal keep subset of the data (exemplars) to prevent forgetting .
- Can we also explicitly incorporate the exemplars into the prediction process . to further prevent forgetting?

Method

- Embed guery image with a fixed feature extractor, f. 1.
- Find k nearest neighbors from the memory, i.e. the set of embedded 2. exemplars.
- 3. Input query embedding and k nearest memory embeddings into the Memory Transformer Network (MTN), h.
- 4. Obtain class probabilities using a linear head, q.

The MTN can attend directly to saved examples from memory - so, unlike other rehearsal methods, our mechanism to prevent forgetting is not solely via changes to the optimization procedure.

Experiments

- We use a variety of off-the-shelf, publicly available feature extractors for MTN - SimCLR and CLIP.
- We compare to both end-to-end learned methods and methods with a feature extractor.
- We perform experiments on the large scale datasets ImageNet-1k and Landmarks-1k.
- MTN shows significantly less forgetting than SOTA competing methods.

-ViT-B(CLIP)

MTN

		2-2	
(9	80		
3 (%	70	-	
curac	60		
Acc	50	 	

I - 50

Method	Backbone	Memory usage:		ImageNet-1k		Landmarks-1K			
		Train.	Pred.	50	100	250	50	100	250
PODNet [1]	R18(Scratch)	~		64.1	67.0	-	-	-	-
CCIL [R18(Scratch)	~		65.8	67.6	69.1	40.1	49.7	55.4
SS-IL []†	R18(Scratch)	1		57.0	62.5	67.1	54.9	60.0	64.7
MTN	R18(SS-IL)	~	~	60.8	64.8	68.4	59.4	63.1	66.5
mem. k-NN†	● -R50(SimCLR)		~	53.8	53.9	54.2	30.0	30.1	30.2
BIC [SS]†	-R50(SimCLR)	~		34.3	43.9	56.9	17.4	26.5	38.0
iCARL [26]†	■ -R50(SimCLR)	1	~	56.5	57.0	58.4	27.3	27.7	28.5
LUCIR [■ -R50(SimCLR)	1		60.1	63.0	68.7	48.4	50.9	55.3
SS-IL	■ -R50(SimCLR)	1		66.1	67.5	71.2	46.2	46.6	47.9
MTN	-R50 _(SimCLR)	~	~	69.5	70.7	73.3	51.0	52.3	55.4
mem. k-NN†	-ViT-B(CLIP)		~	47.7	47.7	48.1	35.8	35.9	36.1
BIC [-ViT-B(CLIP)	1		32.9	43.2	57.5	25.3	35.6	47.2
iCARL [26]†	-ViT-B(CLIP)	1	~	52.3	53.2	54.7	36.5	36.9	37.8
LUCIR 🗳	-ViT-B(CLIP)	~		51.6	55.7	63.3	46.2	48.8	53.8
SS-IL	-ViT-B(CLIP)	1		63.9	65.7	69.7	52.4	52.8	54.4

SS-IL - mem. k-NN - MTN