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Abstract
While recurrent neural networks (RNNs) demonstrate outstanding capabilities for

future video frame prediction, they model dynamics in a discrete time space, i.e., they
predict the frames sequentially with a fixed temporal step. RNNs are therefore prone
to accumulate the error as the number of future frames increases. In contrast, partial
differential equations (PDEs) model physical phenomena like dynamics in a continuous
time space. However, the estimated PDE for frame forecasting needs to be numerically
solved, which is done by discretization of the PDE and diminishes most of the advantages
compared to discrete models. In this work, we, therefore, propose to approximate the
motion in a video by a continuous function using the Taylor series. To this end, we
introduce TaylorSwiftNet, a novel convolutional neural network that learns to estimate
the higher order terms of the Taylor series for a given input video. TaylorSwiftNet can
swiftly predict future frames in parallel and it allows to change the temporal resolution of
the forecast frames on-the-fly. The experimental results on various datasets demonstrate
the superiority of our model.

1 Introduction
The ability to predict future frames of a video is essential for many applications such as
weather forecasting [55], autonomous driving [25], robotics [14], or action recognition [29].
When only the raw video is given, the task is very challenging since it requires to learn the
complex motion of the objects present in the video. To address this task, several approaches
have been proposed over the last years. In particular, auto-regressive methods and recurrent
neural networks (RNNs) have been popular [50, 51, 52, 55].

c© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Xingjian, Chen, Wang, Yeung, Wong, and Woo} 2015

Citation
Citation
{Kwon and Park} 2019

Citation
Citation
{Finn, Goodfellow, and Levine} 2016

Citation
Citation
{Liang, Lee, Dai, and Xing} 2017

Citation
Citation
{Wang, Long, Wang, Gao, and Philip} 2017

Citation
Citation
{Wang, Gao, Long, Wang, and Philip} 2018{}

Citation
Citation
{Wang, Jiang, Yang, Li, Long, and Fei-Fei} 2018{}

Citation
Citation
{Xingjian, Chen, Wang, Yeung, Wong, and Woo} 2015



2 POURHEYDARI ET AL.: TAYLORSWIFTNET

Taylor Temporal Model

Decoder

Encoder Decoder

Decoder

Figure 1: Given a sequence of observed frames until time t, the encoder maps them into a latent space.
Our network infers from the observations in the latent space Ht , a continuous function FHt (t + τ)
in one forward pass. The inferred function can then be evaluated for any positive value τ in order to
forecast future frames at t + τ . This can be done in parallel for different values of τ and the decoder
maps the forecast frames back to the image domain.

While these approaches learn the motion implicitly, recently a new line of work appeared
that leverages partial differential equations (PDEs) and deep learning for forecasting video
frames [18, 30, 31, 39, 41]. PDEs are very appealing for this task since they are an appro-
priate tool to model physical phenomena like dynamics. These methods model motion in
the continuous time space in contrast to auto-regressive models or recurrent neural networks
that model motion sequentially in a discrete time space. This has two major advantages.
First, the motion model is independent of the sampling rate and it is, for instance, possible
to forecast the motion at a higher sampling rate than the observed frames. Second, which
is more important, a continuous PDE can be solved for any future point. It is therefore not
required to sequentially go through all frames until the desired point in the future is reached,
which increases the inference time for points that are more distant in the future and which
is prone to error accumulation. The estimated PDEs, however, do not provide directly the
prediction, but they need to be numerically solved, which diminishes most of the advantages
compared to discrete models.

In this work, we therefore propose a novel approach that takes full advantage of a contin-
uous representation of motion. Instead of learning a PDE that needs to be numerically solved
for training and inference, we directly infer a continuous function that describes the future.
In contrast to RNNs that forecast the future frame-by-frame or PDE-based approaches that
discretize PDEs to solve them numerically, we infer a continuous function over time from
the observations. This avoids discretization artifacts and provides an analytical function that
can be swiftly evaluated for any future continuous point as illustrated in Fig. 1. This allows,
for instance, to generate frames at different future points in parallel. We can also forecast
future frames at a higher sampling rate than the observed frames. All these properties are
very useful for practical applications and demonstrate the advantages of a continuous repre-
sentation.

It is, however, very challenging to infer such a continuous function from a discrete set
of high-dimensional observations as it is the case for video frame forecasting. We therefore
propose to approximate the unknown function by the Taylor series around the last observa-
tion t up to a finite order. As illustrated in Fig. 1, we first map the observed frames into a
learned embedding spaceHt ∈H and then estimate each term of the Taylor expansion FHt .
An important aspect of the proposed TaylorSwiftNet is that it learns to generate a full Taylor
expansion from a discrete set of observations, i.e., after training, the network is capable of
inferring a Taylor expansion of an unknown function only from a set of observations until
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point t. We validate the capabilities of the network using simulated data of known functions
where the ground-truth Taylor expansion is known as well for high-dimensional problems
like video frame forecasting as shown in Fig. 1. Since the network infers a full function over
time FHt : R 7→ H, we can evaluate the function for any real value t+τ ∈ R. For instance,
we can swiftly generate frames for τ = 1,1.5,4 as in Fig. 1. Since the predictions are in the
embedding space, the predictions are mapped back to the image domain by the decoder. The
entire TaylorSwiftNet consisting of the encoder, the estimation of the Taylor expansion, and
the decoder is trained end-to-end.

We compare the proposed approach with state-of-the-art methods on four datasets from
different application domains ranging from video frame forecasting to forecasting sea surface
temperature. On all datasets, TaylorSwiftNet outperforms RNN-based as well as PDE-based
approaches. We furthermore demonstrate the capabilities of the approach, namely estimating
Taylor expansions of analytical functions and the flexibility to forecast frames with a higher
frame rate than the observed data.

2 Related Work
Several approaches have been proposed for video forecasting using unlabeled videos. In
particular, deep neural networks have shown promising results for this task. [28, 34, 37]
use optical flow to model changes of temporal dynamics and to better predict the future.
Some works [14, 23, 56] focus on modeling the geometric transformations between frames
to predict the future frames. [13] propose to solve the video prediction task by estimating and
using the transformations of the signal in the frequency domain. [6, 48] focus on improving
the sharpness of the predicted frames by using custom loss functions. To better handle the
future uncertainty and generate sharp predictions, [10, 25, 35, 49] have used generative
adversarial networks or variational autoencoders. Methods based on 2D or 3D CNNs [3, 16,
35, 49] have also been proposed. In particular recurrent neural networks (RNNs) have been
popular [14, 32, 36, 45, 50, 51, 52, 53, 55] in recent years.

While these approaches learn the motion implicitly, recently a new line of work ap-
peared that leverages partial differential equations (PDEs) and neural networks for forecast-
ing video frames [11, 18, 30, 31, 39, 41]. Some recent PDE-based works demonstrate sub-
stantial improvements compared to recurrent neural networks for video frame forecasting.
[1, 18, 40, 57] define the dynamics using learned ordinary differential equations following
[4]. [15, 27, 43] employ differential equations for stochastic data. Some methods shape
the prediction function or the cost function of their methods using prior physical knowl-
edge [2, 7]. For instance, [9] uses general advection-diffusion principles as a guideline for
designing a network. [2, 42, 44] discover the PDEs by sparse regression of potential dif-
ferential terms. [5, 17, 46] introduce non-regression loss functions inspired by Hamiltonian
mechanics [19]. [12, 38] have designed specific architectures for predicting and identify-
ing dynamical systems inspired by numerical schemes for solving PDEs and residual neural
networks [4, 26, 33, 59]. [11] proposes the separation of variables as a general paradigm
based on a resolution method for partial differential equations for video prediction and dis-
entanglement. PDE-Net [30, 31] discretizes a broad class of PDEs by approximating partial
derivatives with convolutions.

Although partial differential equations model the motion in the continuous time space,
the PDE-based approaches discretize the PDEs using, for instance, the forward Euler method.
In this work, we propose a different continuous representation that does not need any dis-
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cretization.

3 Forecasting Future Frames
The problem of forecasting future frames can be formulated as

p(xt+1|Xt) for Xt = {xt−k, . . . ,xt}, (1)

where the probability of a future frame xt+1 is conditioned on the past k observed frames.
For forecasting with a different temporal step, i.e., τ > 1, τ ∈ N, this results in

p(xt+τ |Xt) =
∫

xt+τ−1

· · ·
∫

xt+1

p(xt+τ |xt+τ−1,Xt) . . .

p(xt+2|xt+1,Xt)p(xt+1|Xt)dxt+τ−1 . . .dxt+1.

When the motion is complex and xt+τ is high-dimensional, as it is the case for video frame
forecasting, the computation of the integrals is infeasible. Common auto-regressive ap-
proaches therefore approximate the solution frame-by-frame by taking the argmax of (1) and
adding the new estimate xt+1 to the observations. This, however, has the disadvantage that
one needs to iterate over all frames until xt+τ is reached, the approximation error increases
over time, and τ is constrained by the frame-rate of the training and observed data.

To overcome these issues, we propose to learn a mapping from the space of observations
X to the space of infinitely differentiable functions F : R 7→ X . Note that we learn the
mapping to a function space and not the Euclidean space X . During inference, the learned
mapping maps a given observation Xt to a continuous forecasting model FXt , which can
then be evaluated for any τ ∈ R>0:

xt+τ = FXt (t + τ) (2)

as it is illustrated in Fig. 1. This means that we can forecast a frame in a more distant future
directly without forecasting all intermediate frames. It allows forecasting all future frames
in parallel instead of forecasting them sequentially. Finally, we can even forecast at super
temporal resolution, i.e., at a higher frame-rate than the observations, without the need to
re-train the model.

4 Temporal Dynamics Modeling Through Taylor Series
As discussed, our novel approach for continuous forecasting can directly predict x̂t+τ for
any value τ ∈ R>0 from the observations Xt . Since using the observed frames Xt directly
is not practical, we embed the observed frames in an embedding space Ht and infer the
continuous motion model (2) in the embedding space, i.e., FHt : R 7→ H where FHt is
infinitely differentiable and smooth. As illustrated in Fig. 2, the entire model thus consists
of three parts that are learned end-to-end:

x̂t+τ =D(ht+τ) ; ht+τ = FHt (t + τ) ;Ht = E(Xt). (3)

E(.) first maps the observed frames Xt into the learned embedding space. Given the embed-
ding of video frames represented by Ht , our network infers an observation specific function
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Figure 2: TaylorSwiftNet. The network gets a sequence of frames Xt ∈ RC×T×H×W as input. The
encoder maps all frames into a latent space. The frames in the latent space are denoted by Ht ∈
RC′×T×H ′×W ′

and ht ∈ RC′×H ′×W ′
denotes the embedding for frame t. Using a Taylor series of order

n, the function FHt (t + τ) is approximated to model the temporal dynamics. To estimate the higher
order terms of the Taylor series, Ht is fed to the DC blocks. The DC blocks estimate sequentially the
δis, which are the estimated derivatives of FHt at the point t. Having the derivatives δi, the Taylor
series approximates FHt (t + τ) at the future time step τ , which yields ht+τ . Finally, ht+τ is fed to the
decoder and the future frame x̂t+τ is predicted.

FHt (.) that models the future dynamics in the embedding space. It is important to note that
our approach infers a full function with respect to τ and not a single point estimate as it is
done by standard networks. The function FHt (.) can therefore be swiftly evaluated for any
value. D(.) finally decodes the forecast embedding ht+τ and predicts the future frame x̂t+τ .
While E(.) and D(.) will be discussed in Section 5, we first discuss FHt .

Our goal is to learn the unknown continuous function FHt that represents the future
dynamics in the embedding space. In case of τ = 0, FHt (t) = ht , which is equal to the last
vector of Ht . For τ > 0, however, this function is very complex. We therefore propose to
approximate the function using the Taylor series:

FHt (t + τ)'
γ

∑
n=0

F (n)
Ht

(t)
n!

τ
n ; F (n)

Ht
=

∂ nFHt

∂τn . (4)

If FHt (t + τ) is an analytic function, the Taylor series with γ = ∞ is equal to FHt (t + τ). In
practice, we approximate it by using only a finite number of terms.

Although the approximation (4) requires to compute F (n)
Ht

for higher order terms at t in
order to get a good approximation, this needs to be done only once and the function can be
evaluated for any τ > 0. Since computing the derivatives of an unknown function in a very
high dimensional space is impractical, we propose to learn a network that infers them from
Ht :

F (n)
Ht

(t)' fn

(
∆n

(
H(n−1)

t

))
; H(n−1)

t = ∆n−1

(
H(n−2)

t

)
(5)

where fn and ∆n are trainable blocks that will be described in Section 5 and H(0)
t = Ht .

Considering (4) and (5), we can reformulate (3) as:

x̂t+τ =D

(
ht +

γ

∑
n=1

fn(∆n(∆n−1(. . .∆1(E(Xt)))))

n!
τ

n

)
. (6)

Note that the γ terms of the Taylor series are computed recursively, but only once for a given
observation. All future frames t + τ can be predicted in parallel as it is illustrated in Fig. 1.
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Having the future frame xt+τ as ground-truth during training, we can compute the loss
between the predicted frame x̂t+τ and the ground-truth frame xt+τ and update the parameters
of D, fn, ∆n, and E .

5 Proposed Architecture
We now describe the network architecture that learns the model formulated in (6). As illus-
trated in Fig. 2, the network first encodes the input video frames, i.e.,Ht = E(Xt). Then the
temporal model approximates the function FHt (t+τ), and finally, we only need to apply the
decoderD to the output of the temporal model FHt (t+τ) to generate images for all relevant
positive values τ in parallel, as illustrated in Fig. 1.

Encoder. The encoder E(Xt) maps the input video frames Xt ∈ RC×T×H×W to Ht ∈
RC′×T×H ′×W ′ . C,T,H,W are the video channels, number of frames, height, and width of
the frames. C′,H ′,W ′ are the channels of the feature maps and their height and width. We
have used a modified version of 3DResNet [20, 21] for the encoder, which is described in the
supplemental material, but any 3D convolutional neural network can be used in principle.

Temporal Model. The temporal model FHt (t+τ) models the future temporal dynamics
and forecasts the frame at the future temporal step t+τ ∈ R in the embedded space ht+τ ∈
RC′×H ′×W ′ . As illustrated in Fig. 2, we estimate F (n)

Ht
(5) recursively. We use for each ∆n(.) a

convolutional block called delta convolutional block (DCB). The first 2 convolutional layers
of DCB use kernels with size 3×3×3 and stride 1×1×1. The input and output size remains
the same.

The output feature map is then fed to: (a) the final convolutional layer fn to output
the estimated derivative δn ∈ RC′×H ′×W ′ ; (b) the next DC block to estimate the next order
derivative δn+1. fn uses kernels with size T ×3×3. The estimated derivatives are then used
in (5) to model the temporal dynamics and forecast the embedding ht+τ ∈RC′×H ′×W ′ . While
in our experiments the different DC blocks do not share their weights, we also evaluate a
recurrent version with shared weights in the supplemental material.

Decoder. The decoder is a convolutional neural network that consists of 6 convolutional
layers with kernel size 1×3×3. The decoder D(ht+τ) decodes the embedding and predicts
the future frame x̂t+τ ∈ RC×H×W . For more details regarding the implementation details of
the decoder, we refer to the supplemental material.

6 Experiments

6.1 Datasets and Evaluation Metrics
Following the state-of-the-art [18], we also evaluate our method on four datasets from very
different domains, namely Moving MNIST [45], Human 3.6M [22], Traffic BJ [58], and Sea
Surface Temperature [8].

Moving MNIST is a standard dataset for sequence prediction which consists of two
random digits moving inside a 64×64 grid. Data for training were generated on the fly and
a test set of 10,000 sequences was used for evaluation. We predict 10 unseen future frames
given 10 seen input frames.

Human 3.6M contains human actions with their corresponding 3D poses for 17 action
scenarios. Following the setting of [18, 53], we select subjects S1, S5, S6, S7, and S8 for
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Moving MNIST Traffic BJ Sea Surface Temperature Human 3.6M
Method MSE ↓ MAE ↓ SSIM ↑ MSE ×100 MAE SSIM MSE ×10 MAE SSIM MSE /10 MAE /100 SSIM

Advection-diffusion [9] - - - - - - 34.1 54.1 0.966 - - -
DDPAE [24] 38.9 90.7 0.922 - - - - - - - - -

ConvLSTM [55] 103.3 182.9 0.707 48.5 17.7 0.978 45.6 63.1 0.949 50.4 18.9 0.776
PredRNN [50] 56.8 126.1 0.867 46.4 17.1 0.971 41.9 62.1 0.955 48.4 18.9 0.781

Causal LSTM [51] 46.5 106.8 0.898 44.8 16.9 0.977 39.1 62.3 0.929 45.8 17.2 0.851
MIM [53] 44.2 101.1 0.910 42.9 16.6 0.971 42.1 60.8 0.955 42.9 17.8 0.790

E3D-LSTM [52] 41.3 86.4 0.920 43.2 16.9 0.979 34.7 59.1 0.969 46.4 16.6 0.869
PhyDNet [18] 24.4 70.3 0.947 41.9 16.2 0.982 31.9 53.3 0.972 36.9 16.2 0.901
SimVP [16] 23.8 68.9 0.948 41.4 16.2 0.982 - - - 31.6 15.1 0.904

TaylorSwiftNet (ours) 17.8 42.5 0.965 35.3 13.7 0.992 29.8 52.2 0.978 23.1 15.8 0.910

Table 1: Comparison to the state-of-the-art on four datasets. The results are the mean over all predicted
frames.

training and subjects S9 and S11 for testing using the walking action. Human 3.6M includes
originally RGB images of size 1000× 1000× 3 which we resize to 128× 128× 3 for our
experiments. We predict 4 unseen frames given 4 input seen frames.

Traffic BJ contains the hourly taxi flows of Beijing in a 32× 32 grid. Each frame has
two channels corresponding to the traffic flow entering and leaving a district. We use 4 input
seen frames to predict 4 unseen frames.

Sea Surface Temperature consists of meteorological data of the Atlantic ocean gener-
ated by NEMO (Nucleus for European Modeling of the Ocean), which is a state-of-the-art
simulation engine for modeling ocean dynamics. Following the protocol of [8], we use the
Sea Surface Temperature (SST) data of 64×64 sized sub-regions extracted from the original
481×781 sized data. We predict 4 future frames given 4 unseen input frames.

Evaluation Metrics. Following the state-of-the-art methods [18, 30, 51], we use the
following evaluation metrics: Mean Squared Error (MSE), Mean Absolute Error (MAE), and
the Structural Similarity (SSIM) [54]. We average the metrics over all frames of the predicted
output sequence. While lower MSE and MAE indicate better performance, a higher SSIM is
better.

If not otherwise specified, we use a Taylor model of order 4 for the Moving MNIST
dataset and of order 2 for the other datasets. We refer to the supplemental material for more
implementation details.

6.2 Comparison to State-of-the-Art
We compare our TaylorSwiftNet with various state-of-the-art methods. As it can be seen in
Table 1, TaylorSwiftNet significantly outperforms the state-of-the-art methods on all datasets
and for all metrics. Only the very recent CNN-based approach SimVP [16] achieves a
slightly lower MAE on Human3.6M. Our direct future temporal forecasting method signifi-
cantly outperforms state-of-the-art architectures based on PDEs or recurrent neural networks
such as PhyDNet [18], ConvLSTM [55], PredRNN [50], Causal LSTM [51], or Memory in
Memory (MIM) [53].

For the Human 3.6M dataset, the approach [47] uses additional supervision like human
poses. Even without this additional supervision, our approach achieves a Peak Signal over
Noise Ratio (PSNR) of 25.75 while [47] reports in the appendix for time step 4 a PSNR
below 21 and around 22 for the sequences with the least human motion. The results demon-
strate that the proposed approach learns a very good temporal model from various videos of
different application domains.

Fig. 3 shows some qualitative results for all datasets. The qualitative results demonstrate
the high quality of the forecast results that are generated by the proposed TaylorSwiftNet.
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Figure 3: Qualitative results. For each dataset, the first row shows the input of the model, the second
row shows the ground-truth, and the third row shows our prediction.

For Moving MNIST, TaylorSwiftNet predicts accurately the digits even when they overlap.
For Traffic BJ, the hourly taxi flows are correctly predicted. The sea surface temperature,
which depends on phenomena that can be described by PDEs, is accurately predicted as
well. And finally, TaylorSwiftNet also precisely anticipates the future position and pose of
the person in the video from the Human 3.6M dataset.

6.3 Ablation Experiments

For the ablation studies, we compare the approach to different baselines, analyze the impact
of the order of the Taylor series (γ), the performance for long-term forecasting, and the
ability to forecast at a higher frame-rate than the observation without re-training the model.
Furthermore, we analyze the accuracy of the learned terms of the Taylor expansion in the
supplemental material.

Comparison to Baselines. To demonstrate that the accuracy is due to the proposed
model that infers a continuous function over τ from the observations and not due to the
encoder and decoder, we compare our approach with two variants that use the same encoder
and decoder. However the baseline models use τ as a conditioning variable, i.e., they use τ

as input and generate a point estimate for a single τ .
The Flatten approach flattens the given hidden embedding Ht using three convolutional

layers with kernel size of 3× 3× 3, concatenates it to vτ and afterwards up-samples it to
obtain ht+τ by using three transposed convolutional layers with kernel size of 1× 3× 3.
The Expand approach expands the vector vτ to the tensor C′×H ′×W ′ and concatenates it
with the tensor from Ht which is temporally squeezed. By concatenating these two tensors
channel-wise, we get a 2C′×H ′×W ′ tensor. With one convolutional layer, we can down-
sample the channels to estimate ht+τ . Both approaches are visualized in the supplemental
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Method MSE MAE SSIM
Point Estimate (Expand) 45.1 69.4 0.642
Point Estimate (Flatten) 43.6 63.6 0.887
Numerical Derivatives 23.1 46.3 0.956

TaylorSwiftNet 17.8 42.5 0.965

Table 2: Comparison of the proposed temporal model to three variants on Moving MNIST.

time
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IM
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(b)
Figure 4: (a) Comparing different orders of our temporal model using 10 frames as observation to pre-
dict the next 10 frames. (b) Comparison of future predictions for time horizons that are larger than the
10 frames used for training. The step size indicates after how many frames the Taylor approximation
is performed. Step size x means that our model forecasts x frames, adds the forecast frames to the
observations, and continues to predict the next x frames. For both plots, we reduced the number of
training epochs compared to the other experiments.

material. In addition, we evaluate TaylorSwiftNet using numerical derivatives instead of DC
blocks. We numerically calculate the derivatives for the Taylor terms over the embeddings,
i.e., δ1 = ht − ht−1 and δ2 = δ1− (ht−1− ht−2) where δ1 and δ2 are the first and second
order derivatives. Even in this setup, we train the model end-to-end. The results in Table 2
show that learning a function for all values of τ performs better than adding τ as input to the
network and that the DC blocks perform better than the numerical derivatives.

Impact of γ . We approximate FHt (t + τ) (4) by γ terms where γ defines the order of
the Taylor series. We therefore evaluate the effect of using different orders of the Taylor
series on Moving MNIST. As it can be seen in Fig. 4a, all three models have approximately
the same prediction performance for τ=1 (time step 11). However, as we increase τ the
difference between the prediction performance of the 3 models increases. This is expected
since having higher orders of the series will result in a better approximation of FHt (t + τ).

Forecasting at Different Temporal Resolutions. To evaluate the capability of our
model for forecasting at a higher temporal resolution than the observations, we train our
model on Moving MNIST but we sample only every second frame, i.e., we use 5 out of 10
frames as observation and 5 out of 10 frames for prediction during training. For inference,
we also sample 5 out of 10 frames as observation, but we aim to forecast all 10 frames. With
our model, we can do this directly by generating the frames for τ = 0.5,1,1.5, . . . ,5 and we
compare the forecast frames to the 10 ground-truth frames. Note that the model is trained
on the reduced temporal resolution (0.5x). Therefore, τ = 5 corresponds to the future frame
10 of the original sequence. The results are reported in Table 3. For comparison, we gen-
erate the frames only for τ = 1,2, . . . ,5 as during training and linearly interpolate between
the frames to get 10 frames. We also compare our approach to the state-of-the-art approach
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TaylorSwiftNet SimVP [16]
Observed Future Observed Future Observed Future

Temporal Resolution 0.5x 1x 0.5x 1x (Interp.) 0.5x 1x (Interp.)
SSIM ↑ 0.819 0.761 0.779

Table 3: Results when the model is trained on lower temporal resolution (0.5x). While the observed
frames are also sub-sampled, the future frames are predicted at full temporal resolution (1x). In case of
‘Interp.’, the frames are predicted at lower temporal resolution (0.5x), but upsampled by interpolation.
Note that the sampling rate of the state-of-the-art method [16] cannot be changed and a higher frame-
rate can only be achieved by interpolation.

SimVP [16]. Since the sampling rate of SimVP cannot be changed after training, we use in-
terpolation as well to get 10 frames. Our model achieves a much higher SSIM compared to
approaches that require interpolation, which shows the benefit of a continuous representation
that allows forecasting frames at a different temporal resolution than the observations.

Long-term Forecasting. In this experiment, we explore the long-term future forecasting
capability of our TaylorSwiftNet. We use the same setup as in the previous experiments for
the Moving MNIST dataset, but instead of predicting for the future temporal horizon of 10
frames we predict 70 frames, i.e., evaluating far beyond the prediction range seen during
training. We therefore evaluate our model in a partially auto-regressive mode where we
directly forecast the first 10 frames and feed them back to predict the next 10 frames. In other
words, we do a Taylor approximation every 10 frames. For comparison, we also perform the
Taylor approximation every 7, 5, 2, and each frame. The latter is a standard auto-regressive
setting.

As it can be seen in Fig. 4b, performing the Taylor approximation every 10 frames per-
forms best for forecasting longer sequences of future frames. In contrast, the accuracy of the
standard auto-regressive setting where the frames are predicted frame-by-frame performs
worst. The reason for such a fast drop in accuracy is due to the error propagation through
the recursive steps. The models with the longer step size need fewer auto-regressive steps
while the models with shorter step sizes need more auto-regressive steps. This shows that
approaches that forecast frames frame-by-frame suffer from error propagation and are not
suitable to forecast longer sequences.

7 Conclusion

In this work, we presented an approach that forecasts future frames by modeling the dynam-
ics in the continuous time space without requiring any discretization. Since the motion can
be very complex in a video, we use the Taylor series as the approximation method and train
a network to infer the higher order terms of the Taylor series from the observed frames. We
evaluated our approach on four datasets from different domains like forecasting human mo-
tion, hourly taxi flows, or sea surface temperature. For all datasets, our approach achieves
state-of-the-art results. We also demonstrated that our approach is capable of forecasting
frames at a higher temporal resolution than the observations. The approach, however, has
some limitations. The resolution of the images is low and the predicted images become
blurry for long-term predictions. The latter can be alleviated by using an additional adver-
sarial loss to ensure that the images remain sharp.
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