TaylorSwiftNet: Taylor Driven Temporal Modeling for Swift Future Frame Prediction

Saber Pourheydari^{1,*}, Emad Bahrami^{1,*}, Mohsen Fayyaz^{1,4*}, Gianpiero Francesca^{2,}, Mehdi Noroozi³, Jürgen Gall¹ ¹University of Bonn, ²Toyota Motor Europe, ³Bosch Center for Artificial Intelligence, ⁴ Microsoft Research, *Contributed equally to this work

Introduction

- Methods based on Partial Differential Equations (PDE) are capable of modeling in continuous time space
- However, the PDE-based methods discretize the PDEs for training and inference
- We propose an approach capable of learning temporally continuous representation that does not need any discretization

ullet To forecast future frames at t+ au the learnt function $\mathcal{F}_{\mathcal{H}_t}$ can be evaluated for any positive value au in parallel

$\mathcal{F}_{\mathcal{H}_t}(8)$ Decoder-

Temporal Dynamics Modeling Through Taylor Series

•The model consists of three parts that are learned end-to-end, Encoder (E), Decoder (${\cal D}$), and Temporal model (${\cal F}_{{\cal H}_{*}}$)

$$\hat{x}_{t+ au} = \mathcal{D}(h_{t+ au}) \ ; \ h_{t+ au} = \mathcal{F}_{\mathcal{H}_t}(t+ au) \ ; \ \mathcal{H}_t = \mathcal{E}(\mathcal{X}_t)$$

•The Temporal model, $\mathcal{F}_{\mathcal{H}_t}$, is approximated using Taylor series: $\mathcal{F}_{\mathcal{H}_t}(t+ au) \simeq \sum_{n=0}^{\gamma} rac{\mathcal{F}_{\mathcal{H}_t}^{(n)}(t)}{n!} au^n$; $\mathcal{F}_{\mathcal{H}_t}^{(n)} = rac{\partial^n \mathcal{F}_{\mathcal{H}_t}}{\partial au^n}$ •The derivatives $\delta_n = \mathcal{F}_{\mathcal{H}_t}^{(n)}$ are approximated with Delta Convolutional Block (DCB)

Quantitative Results

	Moving MNIST			Tra	ffic B.J	Sea Surface Temperature			Human 3.6M		1		0.97	order 2	
Method	MSE ↓	MAE↓	SSIM ↑	MSE ×100	MAE SSIM	MSE ×1) MAE	SSIM	MSE /10	MAE /10	SSIM	0.95 step 1 step 2		order 4 order 8	
Advection-diffusion	-	-	-	-		34.1	54.1	0.966	-	Ξ	-		0.96		
DDPAE	38.9	90.7	0.922	-		-	-	-	-	-	-	0.90 - step 10	0.95		
ConvLSTM	103.3	182.9	0.707	48.5	17.7 0.978	45.6	63.1	0.949	50.4	18.9	0.776	₹ 0.85	SSIN		
PredRNN	56.8	126.1	0.867	46.4	17.1 0.971	41.9	62.1	0.955	48.4	18.9	0.781	či li	0.94		
Causal LSTM	46.5	106.8	0.898	44.8	16.9 0.977	39.1	62.3	0.929	45.8	17.2	0.851	0.80	0.93		
MIM	44.2	101.1	0.910	42.9	16.6 0.971	42.1	60.8	0.955	42.9	17.8	0.790	0.75			
E3D-LSTM	41.3	86.4	0.920	43.2	16.9 0.979	34.7	59.1	0.969	46.4	16.6	0.869		0.92		
PhyDNet	24.4	70.3	0.947	41.9	16.2 0.982	31.9	53.3	0.972	36.9	16.2	0.901	0.70 - 10 20 30 40 50 60 70 80	11 12 13 14 15	, 16 17 18 19 20	
SimVP	23.8	68.9	0.948	41.4	16.2 0.982	-	-	-	31.6	15.1	0.904	time	tim	ne	
TaylorSwiftNet (ours)	21.2	60.8	0.952	35.3	13.7 0.992	29.8	52.2	0.978	23.1	15.8	0.910		Comparison of future predictions for		
Comparison to the state-of-the-art on four datasets												Comparing different orders of our temporal model	time horizons that are larger than the 10 frames used for training		
Qualitative Results															

