
Introduction 

● Methods based on Partial Differential Equations (PDE) are capable of modeling 
in continuous time space

● However, the PDE-based methods discretize the PDEs for training and inference 

● We propose an approach capable of learning temporally continuous 
representation that does not need any discretization 

● To forecast future frames at             the learnt function         can be evaluated for 
any positive value    in parallel

●The model consists of three parts that are learned end-to-end, Encoder (    ), Decoder (     ), and Temporal model (        ) 
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●The Temporal model,         , is approximated using Taylor series:

●The derivatives                     are approximated with Delta Convolutional Block (DCB)

  

Temporal Dynamics Modeling Through Taylor Series 
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