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Abstract

Estimating 6D object poses for everyday household objects is a crucial and challeng-
ing task for robotic applications. Recent advances in category-level object pose estima-
tion show great potential in this direction. Since the training of the networks relies heav-
ily on ground truth 6D poses, which are expensive to annotate in real environments, self-
supervised methods become a realistic approach to overcome the domain gap between
synthetic and real images. However, these methods work poorly on photometrically-
challenging objects because of the missing depth or artifacts in RGBD data.

We propose to use the polarization clues to overcome the drawbacks of RGBD im-
ages and improve the detection performance for objects with specular surfaces in the
self-supervision stage. To this end, we generate a synthetic dataset containing cutlery of
various shapes and sizes, and a markerless real dataset with accurate 6D pose annotations.
We introduce several novel losses for self-supervision based on inputs of multiple modal-
ities which fully utilize the polarization information. The experiment result shows that
the proposed method improves both 2D detection and 3D IoU of the predicted bounding
boxes over SOTA methods without usage of annotated ground truth. This work consti-
tutes the first solution for self-supervision on challenging reflective objects and explores
the usage of polarization images. We evaluate the effectiveness of the proposed pipeline
by proposing synthetic and real data and thorough evaluations.
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It may be distributed unchanged freely in print or electronic forms.
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1 Introduction

Category-level object pose estimation is a key task in computer vision. The problem is
challenging as it requires real images with accurate 6D object pose annotations which are
intricate to acquire [3, 35]. Since 6D poses of objects are difficult to be annotated, training
on synthetic images constitutes a valid alternative, while the domain gap between synthetic
and real images remains a challenge. To overcome the domain gap, self-supervision methods
such as CPS++ [23] are proposed.
Current self-supervision methods rely heavily on depth sensors and perform poorly on pho-
tometrically challenging objects due to missing values and artifacts in the depth images.
Depth sensors such as time-of-flight (ToF) cameras measure the time that the light signal
takes to bounce back from the object surface, and calculate the depth based on this elapsed
time which is largely influenced by reflection and refraction properties and leads to incor-
rect results for photometrically challenging objects [12]. However, these object categories
are very common in household environments. Although active sensors fail on reflective
surfaces, passive sensors like polarization cameras capture light information related to sur-
face normals [29]. We make use of polarization images to complement RGB-D images and
overcome the photometric challenges for the domain adaptation, while only requiring RGB
images for inference.
Category-level 6D object pose estimation datasets, such as NOCS [33], contain synthetic
and real images of several object categories, but typically do not feature common photo-
metrically challenging objects such as cutlery. Therefore, we create a synthetic dataset with
10k images containing cutlery of various shapes and sizes for training, and a multimodal
real dataset containing cutlery in daily scenarios with accurate 6D pose annotations. We
then propose a self-supervision pipeline to overcome the domain gap between. Our pipeine
consists of two steps. The first step is the self-supervision of the 2D detections. Due to
the domain gap between the training (synthetic) images and the real images, there are false
positives and missing detections in the real images. The light becomes polarized on specular
surfaces of metallic objects, therefore leading to higher values of degree of linear polariza-
tion (DOLP) than the surrounding environment. The polarization information is leveraged
to determine the false positives in the detections and preserve correct detections for finetun-
ing the network. The result shows that both the average precision and recall improve after
self-supervision. In the second step, multiple novel losses are proposed for self-supervision
of the 9D object bounding boxes, which includes the rotation, translation and scales of the
object. In the 3D lifting module, the normalized object shape, object scales, along with ro-
tations and translation of the object is predicted. Then, the predicted object model in 3D
space is fed into a differentiable renderer to generate the rendered mask and depth image,
where the normal map is also calculated. The rendered mask should be consistent with the
mask extracted from DOLP image within the predicted bounding box, and the mask loss is
calculated with focal loss between the masks. The normal image derived from the predicted
depth image is compared with the possible normal directions from the polarization image, as
a guidance for the object shape and poses. To better utilize the depth map as a complement,
artifacts in the real depth map are analysed and removed, while the remaining part is utilized
for self-supervision to reveal the scaling of objects in the image.
In summary, we provide three main contributions in this paper:
1. Our work is the first to investigate self-supervision of category-level object pose estima-
tion networks for photometrically challenging objects. To this end, we introduce a dataset
including both synthetic and real images of reflective objects, as a complement for the pre-
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vious dataset [33], which did not contain photometrically challenging categories.
2. We introduce the use of polarization images in the self-supervision stage of the training to
reveal the material property and normal angles, which active sensors such as depth cameras
fail to highlight. At inference, the network works on RGB images only, which simplifies the
deployment and scalability.
3. In the training stage, we leverage polarization clues to verify success detection and im-
prove the 2D detection results. For self-supervision of the 6D pose and scales of the objects,
we propose novel losses combining the polarization information and valid depth measure-
ments. The evaluations show the effectiveness of the pipeline and the proposed losses.

2 Related Work

2.1 Instance-level 6D Object Pose Estimation

6D object pose estimation networks for instance-level objects have achieved great advances
recently [17, 27, 37]. The networks can be categorized into three types, direct regression
methods, keypoint-based methods or with latent representations. The direct regression meth-
ods extract the bounding box features and directly regress the translation and rotation of the
objects. [36] estimates the translation of object by predicting the center point and depth
of center, while estimating the rotation as quaternion. [14] [21] directly predicts the 3d
coordinates of the object. [2] extends 2d EfficientNet [28] for 6d pose and propose 6d au-
gumentation methods which greatly boosts the performance. [30] combines features from
both rgb and depth images to regress the object pose. [15] utilizes object candidates from
multiple images for the global scene refinement.

2.2 Category-level 6D Object Pose Estimation

The need for an instance-specific network can be a limitation which is difficult to over-
come [26]. For this task, researchers designed category-level methods for 6D object pose
estimation. These can be divided into monocular or rgb-d based approaches. CPS++ [23]
estimates the normalized object point cloud as well as the scales, rotation and translations
of the objects from the 2d features. [6] utilizes implicit representations to representing the
appearance, shape and pose of category-level objects which is utilized in the inference time.
[9] predicts the pseudo depth image and nocs representation from the monocular image and
estimates the object poses by alignment.
Most of the works leverage depth images for estimating category-level object poses. NOCS
[33] estimates the normalized coordinate space of the object and lifts to 3d with correspond-
ing depth map. [4] explores intra-class variation based on the category priors and detects
object key-points in the point cloud, to get the deformation and pose of the objects. [22] uti-
lizes spherical convolutions to better extract the features from the point cloud. [5] introduces
graph convolutions to extract features from rgb-d inputs and use decoupled heads to predicts
the translation and rotations. [8] further leverages a voting-based method in the point cloud
to better get the poses of the objects. DualPoseNet [22] uses two parallel pose decoders on
top of a shared pose encoder and performed spherical convolution on the point cloud to fully
utilize RGBD images there. [20] estimates the pose considering the articulated objects.
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2.3 Domain Adaptation for 6D Object Pose Estimation

Getting accurate 6D object poses takes a lot of effort and training with few [34] or weak
labels [18, 19] as well as synthetic images is a popular solution. However, with the do-
main gap, it is hard to deploy the trained networks in the real environments. Therefore,
domain adaptation has been an attractive topic in the field. For the self-supervision of the
instance-level 6D pose estimation networks, [31] employs both visual alignments and depth
alignments to refine the predicted object poses with a differentiable renderer. [32] extends
the self-supervision approach to occluded objects. For category-level objects, [16] uses a
student-teacher network and bidirectional point filtering to align the predicted point cloud
with the depth image for self-supervision of the network. [23] predicts the attention maps
in the region of interest, and aligns the predicted object point cloud with the depth maps in
the attention maps with Chamfer distances. Instead of predicting the object shape as point
cloud, [24] leverages implicit representations of the category objects with depth images for
self-supervision.

2.4 Object Pose Detection and Shape Recovery with Polarization
Image

Depth cameras fail to measure the surface distances of photometrically challenging objects,
while polarization camera can reveal the material properties by capturing the change in the
polarization state. [13] utilizes the polarization information for the segmentation of transpar-
ent objects and the results improved greatly in comparision with rgb inputs. Methods such
as [40], [39] estimates the depth and normal of objects from a stereo pair or a sequence of
images with physical derivations. [38] estimates the missing values of the depth camera with
the help of polarization images for metallic car components. [1] further directly estimates
the object surface normal from polarization images with neural networks. [10] uses the po-
larization images for instance-level 6d pose by predicting the normal, NOCS map of the
objects. However, no work has been done on polarization images for category-level object
pose estimations.

3 Dataset Preparation

Synthetic dataset generation To generate the synthetic dataset, object models of cutlery with
various shapes and sizes are collected. Afterwards, BlenderProc [7] is leveraged to generate
the synthetic dataset. The elevation angle is set between 30 and 60 degrees and the in-plane
rotations are set between -90 to 90 degrees. Physical positioning of the objects are used and
the cutlery are rendered with glossy material in blender. In total 10k images are generated
for the training, we will opensource the rgb and depth images, along with the annotated
groundtruth in the dataset.

Real dataset generation A polarization camera and rgb-d camera are used for recording
the real dataset. The cutlery objects are pre-scanned and placed in a household environments.
After calibration the image sequences are recorded for both cameras as in [35]. Since the
two cameras are calibrated with the same calibration board, the depth camera transformation
with respect to the polarization image is calculated and the depth images are aligned to the
polarization images by rendering the transformed point cloud.
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Figure 1: The illustration of our proposed self-supervision approach. The inputs are polar-
ization images, which are averaged as a single RGB image, and the depth image. From the
polarization images input, the degree of linear polarization (DOLP), the angle of linear polar-
ization (AOLP) and normal priors are derived. Afterwards the object mask is extracted from
DOLP and utilized to crop the depth map, which is processed with artifact removal, as the
supervision signal. After the 2D self-supervision and lifting to 3D space, the predicted object
shapes, poses and sizes are rendered into the object mask, depth, normal images, which are
leveraged in combination with extracted masks, normal priors, cropped depth images for the
self-supervision.

4 Methodology

Although the former works [23], [16] focus on the domain adaptation for the 6D pose of
object, 2D object detections trained from synthetic images are assumed to be accurate in
the real environment. However, since the cutlery objects have high reflectivity and it is ap-
pearance depends highly on the light sources and surrounding illuminations, which is hard
to fully simulate during rendering, there are false positives and missing detections in the
trained network. The false positives in the detections convey wrong information in the self-
supervision stage of 6D poses and reduce the overall performance. Therefore, we design a
novel approach to distinguish between good and bad detections in the challenging environ-
ment.

Self-Supervision for 2D Detections Though the light signal sent from the depth sensor
can not be reflected back and measured by the receiver on metallic surfaces, the change of
the polarization state of the environment light is captured by the polarization camera. The
environment light is unpolarized and becomes partially polarized by the specular reflection
on the object surface, which results in higher value of degree of linear polarization than the
surrounding environments. Therefore we use a threshold to get the potential object mask
inside the bounding box. It is observed that the cutlery contains thin structures, which are
neglected when searching for the largest connected component. Therefore morphological
operations, which includes dilation followed by erosion with a kernel of 5x5, are performed.
The connected components are then extracted within the bounding box and the one with
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(a) (b)

(c) (d)
Figure 2: Illustration of the mask extracted from the bounding box and the polarization
image, (a) input image, (b) degree of linear polarization, (c) extracted object mask with
morphological operation, (d) extracted object mask without morphological operation.

largest area is assumed to be the object mask. The procedure of mask extraction from polar-
ization images is illustrated in Fig. 2. Based on the assumption that the object should exist
and be inside the bounding box, several criteria are set to determine whether the predictions
are good or not. Firstly the proposals with mask area smaller than a threshold, which we
set as 50, are considered as false positives and discarded. The areas look bright but actually
contain objects with diffuse reflections, which is visualized in Fig. 3 (a). Secondly, the min-
imum and maximum of the x,y coordinates are calculated from the extracted mask, which
should be inside the bounding box and not reaching the boundary of the bound box. With this
step, bounding boxes such as objects are partially inside are avoided. After the processing of
unfitted bound boxes, the remaining object bounding boxes are used as 2D self-supervision
signal for domain adaptation.

Polarization Image Processing The polarization image consists of rgb image of four
different angles I0,I1,I2,I3 at 0, 45, 90, 135 degrees. The polarization rgb is calculated as

Irgb =
1
4
· (I0 + I1 + I2 + I3) (1)

The intensity of the polarization image is defined as

I(Φ) =
Imax + Imin

2
+

Imax − Imin

2
· cos(2Φ−2φ) (2)

The degree of polarization is calculated as

ρ =
Imax − Imin

Imax + Imin
(3)

Imax and Imin are the maximum and minimum values of the four observations in Equ. 2
and 3. The degree of polarization ρ can be derived from zenith angle θ for diffuse surfaces
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(a) (b)
Figure 3: (a) 2D detections without self-supervision, where red boxes indicate false posi-
tives while the green boxes represent verified good predictions, (b) 2D detections after self-
supervision, where objects are correctly predicted.

in Equ. 4 and specular surfaces in Equ. 5, where n is the refractive index of the material,
which is normally set as 1.5.

ρ =
(n− 1

n )
2 sin2

θ

2+2n2 − (n+ 1
n )

2 sin2
θ +4cosθ

√
n2 − sin2

θ

(4)

ρ =
2cosθ sin2

θ

√
(n2 − sin2

θ)

cos2 θ(n2 − sin2
θ)+ sin4

θ
(5)

The zenith angle θ is θ1 and θ2 in Equ. 5 and there are also two possible azimuth angles
φ + π

2 ,φ − π

2 , because of π-ambiguity. Although two zenith angles can be recovered from
DOLP, only the zenith angle with a lower value is considered, because the range of the
higher value is close to 90 degrees for specular surfaces and less probable in practice, similar
to [38]. Afterwards, the two possible surface normals are recovered by two possible azimuth
angles and the zenith angle with lower value in Equ. 6.

n =

cosψ · sinθ

sinψ · sinθ

cosθ

 (6)

Self-Supervision for Category-Level 6D Poses and Sizes The YoloX [11] Nano model
is leveraged for the 2D detections, where the FPN features of sizes 64x60x80, 128x30x40,
256x15x20 are upsampled and concatenated as features of size 448x60x80. The ROI features
inside the 2D bounding boxes are extracted by ROI alignment and used for 3D lifting. As
shown in Fig. 1, the 6D pose and shape of objects are decomposed into allocentric rotations
in quaternion, translation, object scales, and the normalized point cloud, similar to [23]. The
translation is represented by the projection residual of the object center to the 2D bounding
box center, and the depth of the object center. The normalized point cloud is learned by
a point cloud autoencoder pretrained on synthetic object models with a bottleneck size of
32. The quaternion, projection residual, center depth, scales and the shape encodings are
generated by individual encoders from the 2D features. Then the objects are rendered with a
differentiable renderer module to the object masks and depth image, where the depth image
is transformed into normal map with Korinia [25].
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Figure 4: The 3D lifting module to derive the object 6D poses and sizes. The YoloX [11] FPN
features are upsampled to the same scale and fed into the network to estimate the normalized
object shape, scales, translation and rotation of the objects.

For the self-supervision of the object 6D poses and shapes, novel losses are proposed
consisting of three parts, the polarization mask loss, the surface normal loss, the geometric
loss (Equ. 7). The pipeline is visualized in Fig. 1.

Lall = Lmask
pol +Lnormal

pol +Lgeo
pol (7)

Mask Loss As described in above sections, the object mask extracted from image bound-
ing boxes and degree of linear polarization (DOLP) is marked as Minit . After the morpho-
logical operations and extraction of the largest connected component, the mask is recorded
as Mpol . The loss term is formulated by comparing Mrender and Mpol with focal loss, to
deal with the imbalance of the positive and negative samples, as shown in Equ. 8. Using
polarization image for mask loss leverages the unique material property of metallic objects
and segments the object out even under noisy color information, which is challenging for
monocular images.

Lmask
pol =− 1

|N+| ∑
j∈N+

Mpol
j logMrender

j − 1
|N−| ∑

j∈N−

(1−Mpol
j ) logMrender

j (8)

Polarization Normal Loss The differentiable rendering module provides rendered depth
images. To convert the depth image to normal map, the depth image are reprojected to 3d
space and the spatial gradients are calculated. The normal map N̂r is calculated by cross
product of the two gradients. Given the two possible normal directions for specular surfaces
N̂θ1 , N̂θ2 , D is the intersection of the predicted mask and polarization mask, the normal loss
is defined in Equ. 9. The log function is used to reduce the influence of the possible normal
outliers.

Lnormal
pol =

1
N j

∑
j∈D

min(log(1+ arccos(N̂ j,r · N̂ j,θ1))+ log(1+ arccos(N̂ j,r · N̂ j,θ2))) (9)
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Geometric Loss In [23],[16], the depth images are assumed to be accurate and used
directly for the self-supervision of 6D poses. However, it is observed that for metallic object,
the depth map from ToF camera have missing pixels and artifacts. Part of the depth image
is missing because the receiver of the depth sensor fails to measure the light signal after
specular reflection on object surfaces. Parts of the depth images have larger depth values
than the ground truth, because the light signal from the depth camera is reflected to other
nearby objects and reflected back to the receiver, which measures a longer flight time of the
light and results in larger depth values. Therefore, we adopt the plane assumptions for the
environment and remove the depth values which are physically impossible as artifacts in the
depth image. The L1 loss is applied to the rendered depth map and filtered real depth map
for self-supervision.

5 Experiment

In this section, we introduce the experiment settings and results of the proposed pipeline. The
model is pretrained on the synthetic dataset and trained with our self-supervision method on
real dataset.

5.1 Training Settings

The training is in two steps. Firstly, the Yolo-X model is trained on the synthetic dataset
and fine-tuned on the real scenes. Secondly, the 3D lifting module is trained to estimate
the 9D bounding box with ground truth synthetic data, and then refined with the proposed
self-supervision losses in the real scene. The mask loss, the normal loss and the geometric
loss are multiplied with factors of 50, 50, 1000. The self-supervision network is trained for
15000 iterations with a SGD optimizer and a base learning rate of 1e-5.

5.2 Analysis on 2D Detections

The 2D detection results are evaluated with and without self-supervision. The results of the
average precision and recall, along with F1 scores, are recorded in Tab. 1. The result shows
that through the self-supervision with polarization images, both the average accuracy and
recall become higher. Especially for AP50 and Recall50, the results are improved greatly,
which makes the self-supervision signal in the next stage more accurate. Qualitative results
are visualized in Fig. 3.

5.3 Ablation Study

To evaluate the effectiveness of the proposed losses, an ablation study is conducted and the
results are listed in Tab. 2. The result shows that with improved 2D detections, the 3D IoU
at a threshold of 0.25 can reach 85% and 3D IoU at a threshold of 0.5 can reach 30%. The
valid depth pixels without artifacts play an important role in estimating the scales of objects
in monocular images and the normal priors from polarization images improve the 3D IoU
results.
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AP50 Recall 50 AP Recall F1
w/o self-supervision 60.47 63.75 36.28 38.75 37.47
with self-supervision 100 100 45.89 45.89 45.89

Table 1: Evaluation results of 2D detections

3D25 / 3D50 3D25 3D50
mask+normal 0 0
mask+depth 81.25 25
mask+normal+depth 85 30

Table 2: Ablation. We report 3D IoU results on the real dataset.

3D25 / 3D50 3D25 3D50
CPS++ 42.5 0
Ours 88.75 30

Table 3: Comparison with state of the art on 3D IoU results

5.4 Comparison with State-of-the-art
Since no prior work has been done focusing on the self-supervision of photometrically chal-
lenging categories, we compare our method with CPS++, which performs domain adaptation
for categories with diffuse reflections. The result shows that our method outperforms CPS++
by 42.5% for 3D IoU at a threshold of 0.25 and by 30% for 3D IoU at a threshold of 0.5. The
overall performance improvements come from cross-model learning from polarization and
depth inputs, where the accurate object mask and normal priors from polarization images
help to reconstruct missing depth pixels.

6 Conclusions
In this paper, we introduce a multimodal dataset including synthetic and real images, and
address the problem of self-supervision of photometrically challenging categories. To this
end, we propose a cross-modal learning pipeline, which combines the strengths of polar-
ization and depth modality, for estimating the 6D poses and sizes of object categories with
specular surfaces. The evaluation result shows the effectiveness of our pipeline. In addi-
tion to specular objects, refractive objects such as glass are also quite common in household
environments, which is our target in the future work.

6.1 Limitations
The polarization segmentations could be affected by other reflective materials in the back-
ground. However this can be avoided in many occasions.
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