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Abstract

Given a stereo pair of daytime foggy1 images, we seek to estimate a dense disparity
map and to restore a fog-free image simultaneously. Such tasks remain extremely chal-
lenging in low visibility, partially preventing modern autonomous vehicles from operat-
ing safely. In this paper, we propose a novel simultaneous stereo matching and defogging
algorithm based on variational continuous optimisation. It effectively fuses depth cues
from disparity and scattering to achieve accurate depth estimation as the first step. Then
the depth information is used to help restore a defogged image by leveraging a photo-
inconsistency check. Extensive experiments on both synthetic and real data show the
proposed algorithm outperforms comparative methods in all metrics on depth estima-
tion, and produces visually more appealing defogged images.

1 Introduction
Dense and accurate depth estimation is essential for autonomous vehicles. Combined with
a corresponding high-fidelity intensity image, depth information can benefit high-level vi-
sion tasks such as object detection [40] and semantic segmentation [44]. In comparison
with active sensors, such as LiDAR and radar [19], video cameras are ubiquitous and cost-
effective, and can infer scene depths from disparity provided the correspondence problem can
be solved. Further, clear intensity images aid object recognition and help human drivers plan
and act safely. However, like LiDAR, video camera perception degrades in adverse weather
conditions, such as fog and snow. Whereas radar systems operate well in such conditions,
they have relatively poor resolution and are not well interpreted by a human driver.

To solve these problems we propose simultaneous stereo depth reconstruction and de-
fogging, where video cameras suffer from image colour shift and reduced local contrast.
Existing stereo matching algorithms are predominantly developed under the assumption of
clear scenes. Meanwhile, the vast majority of the literature on defogging addresses single
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1In this work we do not distinguish between fog and haze because they are caused by similar atmospheric
particles and the transition between them is gradual [32]. We focus on thick fog where the visibility is ≤ 40 meters.
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images. There is very little work that tackles these two tasks simultaneously, even though
they are deeply linked by scene depth, which can be inferred from the disparity [43] of stereo
matching and scattering [13] of the fog model respectively. We expect that both results can
be improved by better exploiting this underlying connection.

We propose a novel algorithm within the framework of continuous optimisation which
takes a stereo pair of foggy images to simultaneously estimate disparity and perform defog-
ging. Our main contributions are threefold: a) we design an anisotropic weighting scheme to
allow for non-uniform penalty parameters which are seamlessly incorporated in the disparity
optimisation process; b) we propose a customised regularisation term which effectively in-
jects disparity cues from scattering by encouraging gradient alignment; c) we demonstrate,
through extensive experiments in both synthetic and real scenes, that our method achieves
very strong performance in both stereo matching and defogging compared with state-of-the-
art (SOTA) methods, especially in extremely foggy scenarios. Our approach is based on
variational methods that are easy to make parallel for acceleration. Moreover, it does not re-
quire training data containing foggy images with corresponding clear image and ground truth
dense depth data. The acquisition of such data in real outdoor scenes is time-consuming at
best and not always possible.

2 Related Work

2.1 Stereo Matching

The problem of stereo matching is to find visual correspondences between a pair of im-
ages, which can then be used to infer depths. Conventional methods, being either local (e.g.
[20]) or global (e.g. [3, 23, 24]), usually comprise the following four steps [43]: matching
cost computation, cost aggregation, disparity computation/optimisation, and disparity refine-
ment. There has recently been a surge in deep learning based approaches [8, 11, 28], which
demonstrate fruitful performance. However, the vast majority of the published work has been
evaluated on clear scenes. Fog introduces complex visual effects. Experiments in [18] show
the performance of some of the aforementioned methods degrade rapidly in presence of fog.

2.2 Defogging

The atmospheric scattering model, summarised in [33], states that the observed foggy image
I ∈ RH×W×3 is a convex combination of the latent clear image J ∈ RH×W×3 and the atmo-
spheric light A ∈ R3. The coefficients are controlled by a transmission map t ∈ [0,1]H×W

(Eq. (1)). Assuming homogeneous fog, t is determined by a constant scattering coefficient β

and the distance d between a scene point and the camera (Eq. (2)). d can be further related to
scene depth z given the camera intrinsic parameters. β encodes the fog density and is closely
linked to visibility (i.e. the meteorological optical range [35, Chap. 9]) in meters (Eq. (3)).

I = Jt +A(1− t) (1) t = e−βd (2) vis =− ln(0.05)/β (3)
Single Image Defogging This ill-posed problem amounts to the recovery of J given I only.
Conventional methods [1, 9, 22] rely on some prior information on J or t, and mostly follow
the same pipeline of first calculating A, then estimating and refining t, and finally inverting
Eq. (1) to recover J. Recently, many deep learning based approaches have been proposed.
Some pioneering work [6, 37] replaces only the t estimation stage by a convolutional neural
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Figure 1: A block diagram of our method. The proposed two-stage system consists of a
Foggy Stereo Matching module and a Defogging module. The former estimates a dense
normalised disparity map u from a rectified stereo pair of foggy images I{l,r}, then the latter
performs defogging and restores a fog-free image J.

network. Later end-to-end methods [10, 25, 49] have treated single image defogging as an
image-to-image regression problem.
Stereo Image Defogging This topic is closely linked to simultaneous stereo matching and
defogging (see Sec. 2.3) but is inherently different in that no disparity map is estimated
explicitly as a system output. Such an approach is justified by the observation that a small
error in the estimated disparity may result in a large deviation in depth and thus also in
the defogged image. In the light of this, various deep neural networks [34, 36] have been
proposed. To prepare training data, most of them resort to completely synthetic scenes, e.g.
[30], or add synthetic fog to real indoor images, e.g. [39]. Real, dense ground truth data, with
and without fog, is very difficult to acquire. Some authors have added fog to intensity data
from real outdoor scenes [26, 38], for which dense pseudo-ground truth depth data has been
created by either monocular depth estimation [29] or stereoscopic inpainting [46]. Such a
process can introduce undesirable artefacts in the synthesised foggy images.

2.3 Simultaneous Stereo Matching and Defogging
There has been a limited amount of existing work on simultaneous stereo matching and de-
fogging. Early approaches [7, 27] recast the problem as energy minimisation of a Markov
Random Field, solved by the α-expansion algorithm [3] or loopy belief propagation [16].
Unlike our approach, these discrete optimisation algorithms are difficult to make parallel.
More recently, deep learning based approaches [31, 41, 42] have been adopted, but the same
problem of synthesising realistic outdoor stereo foggy images still exists, particularly con-
sidering the challenges of collecting large-scale training foggy and clear images.

3 Method
In a nutshell, our two-stage system, depicted in Fig. 1, takes a rectified stereo pair of foggy
images I{l,r} as input, and generates a dense normalised disparity map u after the first stage
and a defogged image J after the second stage. Both u and J are in the left frame. We explain
the key modules of our system in the rest of this section.

3.1 Estimation of Transmission Map
We estimate an initial transmission map t̃ ( ·̃ denotes variables from defogging) from Il by
applying an existing single image defogging method ([22] is used in all our experiments).
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(a) Il (b) |a(0)−ugt| (c) w (d) |ũ−ugt| (e) |∇ũ−∇ugt|
Figure 2: Using a foggy scene whose left view is shown in (a), we pixel-wise plot: (b) the
absolute error of the initial discrete disparity a(0); (c) the calculated weight array w; (d) the
absolute error of the disparity from transmission ũ; and (e) the absolute error of the gradient
of the disparity from transmission ∇ũ. All disparity values are normalised between 0 and 1.

Once t̃ is estimated, the corresponding distance map d̃ can be calculated using Eq. (2) given
the value of β , which is derived using Eq. (3) given a known visibility. In the case of an
unknown visibility, considering a moving vehicle, it is possible to estimate β [21, 27]. How-
ever, it is difficult to do this from a single, static pair of images. Therefore, in our experiments
β is assumed to be known. Given d̃ and the camera intrinsic parameters, the corresponding
disparity map ũ is calculated and fed into the subsequent foggy stereo matching block.

3.2 Foggy Stereo Matching
The foggy stereo matching block takes I{l,r} and ũ as input, and estimates u as output. Our
method is built upon [24], which introduces an auxiliary discrete variable a to decouple
a convex regularisation term from a non-convex data term. The optimisation problem is
then solved iteratively and alternately w.r.t. u and a (see [24] for full details). We propose
two major extensions: a) to incorporate a weight array w which penalises the discrepancy
between u and a non-uniformly at different pixel locations; b) to add a regularisation term
based on ũ which effectively deploys depth cues from scattering via gradient alignment.
Non-uniform penalty parameters Inspired by the idea of more general augmenting terms
in ADMM [2], we incorporate a weight array w ∈ [0,1]H×W to penalise the discrepancy
between u and a non-uniformly at different pixel locations. The rationale for doing this
is that the initial discrete disparity a(0), which is obtained from point-wise minimising a
robust stereo matching cost volume C ∈ RH×W×|Γ| (computed by first calculating the Ham-
ming distance between the left and right Census Transforms [48] then locally aggregating
the cost by the adaptive support-weight [47]) along its last dimension via exhaustive search,
can be unreliable in certain (e.g. textureless) regions (see Fig. 2b). We want to penalise the
difference between u and a to a lesser extent in such regions, but impose a larger penalty
in regions where a(0) is more reliably estimated. To this end, at a pixel position (x,y) we
empirically use the following soft step function (inspired by [1]) to generate the weight:
wx,y = min{1, max{0.003, C⋆⋆

x,y/C⋆
x,y −1.15}}, where C⋆

x,y is the lowest cost (assume this oc-
curs at disparity γ⋆x,y) over the whole disparity range Γ, C⋆⋆

x,y is the lowest cost over Γ excluding
disparities at {γ⋆x,y, γ⋆x,y ± 1, γ⋆x,y ± 2}. After calculating all entries of w, we normalise it so
that w ∈ [0,1]H×W . Note in Fig. 2c that w has small values where errors of a(0) in Fig. 2b are
large. We also apply wx,y to the per-pixel matching cost Cx,y ∈ R|Γ| by scalar multiplication.
Depth cues from scattering by gradient alignment A naı̈ve way of using ũ is to consider
it as a direct measurement of u and therefore create a data term. However, as single im-
age defogging is severely ill-posed, t̃ may not be reliably estimated. Moreover, inaccurate
β or inhomogeneous fog can also cause ũ to contain large errors (see Fig. 2d). To over-
come this issue we derive a regularisation term from ũ. More specifically, we encourage
the non-zero gradient of the disparity to estimate u to occur at the same locations as the
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non-zero gradient of ũ. Hence, we penalise inconsistency in non-zero gradient locations, as
opposed to in gradient magnitude difference. A similar idea is used in [9] but to recover
intensity images. Mathematically, we include a regularisation term ∥∇u−∇ũ∥1,0

2, where
∇ : RH×W → RH×W×2 denotes a discrete gradient operator with Neumann boundary condi-
tions. However, in practice the ℓ0 minimisation problem is difficult to solve so we use the
ℓ1-norm ∥∇u−∇ũ∥1,1 instead, which can be rewritten as ∥∇(u− ũ)∥1,1 due to the linear-
ity of ∇. Note that the error in Fig. 2e is much smaller than in Fig. 2d. This term is applied
with second-order Total Generalised Variation [4] (TGV2, which promotes piece-wise planar
surfaces) to constitute composite regularisors.
Optimisation With the above two modifications, we formulate the optimisation problem:

minimise
u,v

λd ∑
x,y

wx,yCx,y
(
ux,y

)
+λs ∥G(∇u− v)∥2,1 +λa ∥∇∇∇v∥2,1 +λt ∥∇(u− ũ)∥1,1 + ι[0,1]H×W (u),

(4)
where G : RH×W×2 → RH×W×2 denotes an anisotropic diffusion operator calculated from
Il , v ∈ RH×W×2 denotes an additional variable to jointly optimise with u, ∇∇∇ : RH×W×2 →
RH×W×4 denotes a discrete gradient operator with Neumann boundary conditions, ι[0,1]H×W (·)
is an indicator function to constrain the feasible set of u as it represents normalised dispari-
ties, and λ{d,s,a,t} ≥ 0 are tuning parameters.

We observe that all terms in Eq. (4), apart from the first one (i.e. the data term), are
convex w.r.t. u. By introducing an auxiliary discrete variable a to decouple the convex terms
from the non-convex data term, Eq. (4) can be recast as a constrained optimisation problem:

minimise
u,v,a

λd ∑
x,y

wx,yCx,y
(
ax,y

)
+λs ∥G(∇u− v)∥2,1 +λa ∥∇∇∇v∥2,1

+λt ∥∇(u− ũ)∥1,1 + ι[0,1]H×W (u), subject to u = a.
(5)

We now form the augmented Lagrangian for Eq. (5):

λd ∑
x,y

wx,yCx,y
(
ax,y

)
+ ⟨s,u−a⟩+ 1

2θ
∑
x,y

wx,y
(
ux,y −ax,y

)2

+λs ∥G(∇u− v)∥2,1 +λa ∥∇∇∇v∥2,1 +λt ∥∇(u− ũ)∥1,1 + ι[0,1]H×W (u),

(6)

where ⟨·, ·⟩ denotes inner product, s denotes the Lagrange multiplier, and θ > 0 is a penalty
parameter which controls how close u and a are drawn together globally.
Solver As [24] suggests, the optimisation problem of Eq. (6) can be iteratively solved by
minimising it w.r.t. u (and v), minimising it w.r.t. a by point-wise exhaustive search, updating
the Lagrange multiplier s, and finally decreasing θ to force u and a to be closer together. The
above procedure is summarised in Algorithm 1. We use ◦ to denote the Hadamard product.
The u minimisation problem (i.e. Line 3 in Algorithm 1) can be solved by the generalised
Condat-Vu algorithm [12, 45]. See our supplemental material for full algorithmic details.
Disparity post-processing Some pixels in the leftmost region of the left frame cannot be
seen by the right frame, causing their disparity values to be extremely close to zero after
Algorithm 1. Since depth is inversely proportional to disparity, the depth errors are mag-
nified, substantially impairing some of the depth error metrics. To overcome this issue we

2Throughout the paper we use ∥·∥p,q to denote a norm such that the p-norm is taken within the groups (e.g. across
different colour channels) then the q-norm is taken between the groups (e.g. across different pixel locations). Using
this notation, many commonly used sparsity-inducing functions can be conveniently yet unambiguously expressed,
such as the anisotropic total variation (p = 1,q = 1) and the isotropic total variation (p = 2,q = 1).
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Algorithm 1: The overall iterative algorithm to solve Eq. (6)
Input: C, w, ũ, G
Parameters : Γ, λd , λs, λa, λt , α , K
Output: u(K+1)

1 Initialisation: ∀x,y : u(0)x,y = a(0)x,y = argmin
ax,y∈Γ

Cx,y (ax,y), s(0) = 0H×W , θ (0) = 1;

2 for k = 0,1, . . . ,K do

3 u(k+1) = argmin
u

⟨s(k),u−a(k)⟩+ 1
2θ (k) ∑

x,y
wx,y

(
ux,y −a(k)x,y

)2
+λs ∥G(∇u− v)∥2,1 +λa ∥∇∇∇v∥2,1 +

λt ∥∇(u− ũ)∥1,1 + ι[0,1]H×W (u) ;

4 ∀(x,y) : a(k+1)
x,y = argmin

ax,y∈Γ

λdwx,yCx,y (ax,y)+ s(k)x,y

(
u(k+1)

x,y −ax,y

)
+ 1

2θ (k) wx,y

(
u(k+1)

x,y −ax,y

)2
;

5 s(k+1) = s(k)+ 1
2θ (k) w◦

(
u(k+1)−a(k+1)

)
;

6 θ (k+1) = θ (k) (1−αk) ;

7 return u(K+1)

add a simple post-processing step (detailed in our supplementary material) to the output of
Algorithm 1. It is worth mentioning that this affects disparities in the leftmost region only,
as can be seen later in Fig. 6.

3.3 Defogging
Once we have established a dense disparity map u after the foggy stereo matching stage, we
estimate the atmospheric light A. This is simply done by first locating where the median
of the top 0.1% pixels with the smallest disparity values occurs, then selecting the intensity
values of Il at that pixel location as A. Next, assuming β is known, we can calculate a
transmission t̄ from u. However, the defogged image J may exhibit strong artefacts if t̄ is
directly used to invert Eq. (1). This can be attributed to factors, such as errors in u (e.g.
caused by occlusion) and an inaccurate value of β . To overcome the issue we propose the
following two extra steps.
Photo-inconsistency check We generate a weight array b ∈ [0,1]H×W which encodes the
photo-inconsistency between Il and Ir given the disparity map u. b is computed by first
warping Ir using u then measuring the Euclidean distance between the warped image and Il
in the CIELab colour space. The maximum distance is capped at a parameter ε . Finally we
normalise b so all its values are between 0 and 1.
Transmission refinement We perform a transmission refinement to effectively fuse t̄ with
t̃. The former, which comes from the disparity u, is trustworthy in regions where the stereo
weight w is high and photo-inconsistency b is low. The latter, which is derived from an
initial transmission estimation step and irrelevant to the value of β , complements the former.
In addition, we include a smoothness constraint to encourage discontinuities in our target
transmission to align to Il . Mathematically, we minimise the following quadratic form:

minimise
t

(t− t̄)⊺ D̄(t− t̄)+
(
t− t̃

)⊺ D̃
(
t− t̃

)
+µt⊺Lt, (7)

where t̄ and t̃ are the column-major vectorisation of t̄ and t̃ respectively, D̄ and D̃ are diagonal
matrices whose diagonal entries are from d̄ = w◦ (1−b) and d̃ = (1−w)◦b respectively, L
is a five-point spatially inhomogeneous Laplacian matrix [15] derived from Il , and µ > 0 is
a tuning parameter. Eq. (7) has a closed-form solution. Once Eq. (7) is solved, we reshape t
to the image size and use it as the transmission map to invert Eq. (1) and recover J.
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4 Experiments
We use the following two datasets for evaluation: the synthetic Virtual KITTI 2 dataset [5]
(VKITTI2) and the real Pixel-Accurate Depth dataset [18] (PAD). See supplementary mate-
rial for how we generate/select evaluation data, parameter setting and implementation3.

For defogging evaluation, we compare our method with others that either have been ex-
tensively used as strong baselines [1, 6, 9, 22, 37], or represent the SOTA [10, 49]. To eval-
uate the deep learning based approaches [6, 10, 37, 49], we use their released, pre-trained
models. For quantitative evaluation, we compute SSIM and PSNR values.

For stereo matching evaluation, we compare our method with [23, 24] (conventional), [8]
(deep learning based) and [28] (SOTA). These baseline methods are applied directly to the
foggy stereo pair as well as to the defogged stereo pair, the left and right frames of which are
independently generated using the best (shown in italics in Tab. 1a, i.e. [22], and Tab. 2a, i.e.
[10]) single image defogging methods. We apply the same disparity post-processing to [24]
as a final step. To evaluate the deep learning approaches [8, 28], we use their released, pre-
trained models on KITTI 2015. If a method generates disparities that are not 100% dense,
background interpolation (as per the KITTI 2015 stereo benchmark) is performed. We adopt
the D1-all disparity error and several depth error metrics from various KITTI benchmarks
[17] and [14].

4.1 Virtual KITTI 2
Quantitative results are presented in Tab. 1 and qualitative results of two scenes are presented
in Fig. 3. From Tab. 1b, the stereo matching performance of most baseline methods is signif-
icantly improved if defogging is applied beforehand (the only exception is [24] so in Fig. 3b
we show its results without the defogging step). This is in line with the observation from
Fig. 3a that [22] removes fog reasonably well at close and medium ranges but fails to reveal
distant objects. Consequently, most baseline stereo matching methods that operate on the
defogged image pair are not able to resolve objects at far range either (see the first two rows
of Fig. 3b).

In addition, we investigate how the disparity results of all stereo matching methods vary
if the input images get flipped upside down. This is illustrated in the last row of Fig. 3b,
overlaid with the D1-all metric value change. The motivation behind this experiment is
to determine to what extent stereo reconstruction is based on context information (e.g. the
depth values in the foreground road are entirely predictable in VKITTI2 data without stereo)
and to what extent dependent more generally on object geometry and reflectance. The key
observation is that [24] and our method are able to produce very consistent results, whereas
other methods witness noticeable performance degradation.

(a
)D

ef
og

gi
ng

Method SSIM PSNR

DCP [22] 0.606 9.244
GRM [9] 0.458 7.993
NLD [1] 0.480 7.323
DehazeNet [6] 0.487 7.386
MSCNN [37] 0.499 7.537
PSD [10] 0.424 6.591
4KDehazing [49] 0.533 11.135

Ours 0.668 11.248 (b
)S

te
re

o
m

at
ch

in
g

Method D1-all RMSE MAE SILog Sq Rel Abs Rel δ < 1.25 δ < 1.252 δ < 1.253

on
Is

Kuschk [24] 10.309 26.375 7.491 28.905 4.655 10.317 85.525 91.063 94.468
SGM [23] 33.061 35.845 13.578 53.615 12.087 27.524 71.718 79.749 84.294
PSMNet [8] 35.306 39.603 15.932 53.176 11.473 20.960 67.398 77.740 83.331
Lac-GwcNet [28] 24.026 38.028 14.218 52.408 10.448 16.331 76.025 82.039 85.542

on
D

C
P

Js Kuschk [24] 10.873 26.596 7.628 30.336 4.733 10.554 84.947 90.548 94.027
SGM [23] 23.813 32.590 11.242 43.379 9.813 21.567 78.282 84.656 88.338
PSMNet [8] 24.373 37.554 14.188 46.226 9.783 17.699 73.802 83.827 87.634
Lac-GwcNet [28] 15.309 34.753 11.632 42.382 8.180 11.894 83.390 87.771 89.922

Ours 8.861 26.143 7.310 25.517 4.197 8.795 86.922 92.415 95.523

↑
↓

Table 1: Quantitative results on VKITTI2. Ours performs the best in all metrics.

3Our code is publicly available at: https://github.com/tedyiningding/VSSMD.
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Input left image DCP [22] GRM [9] NLD [1] DehazeNet [6]

MSCNN [37] PSD [10] 4KDehazing [49] Ours Ground truth

(a) Defogging results. Our method is the best at revealing distant vehicles (blue rectangles), whereas
all baselines methods fail to do so. It is also worth noting that although [49] outperforms other baseline
methods in the averaged PSNR by a comfortable margin, its results are visually much less favourable
(blurring and ghost objects) and therefore we consider [22] as the best baseline method.

Kuschk [24] on Is SGM [23] on Js PSMNet [8] on Js Lac-Gwc [28] on Js Ours Ground truth

-0.043 +5.650 +10.410 +2.895 -0.014
same as above

(b) Disparity results. The first two rows show our method is the best at resolving small and distant
objects (red rectangles) with the least overall visual artefacts. The last row shows [24] and our method
are able to produce very consistent results after flipping the second row’s input images upside down.

Figure 3: Qualitative results on VKITTI2

4.2 Pixel-Accurate Depth Dataset
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Kuschk [24] on Is

SGM [23] on Is

PSMNet [8] on Is

Lac-GwcNet [28] on Is

Ours on Is

Figure 4: Depth RMSE vs. visibility
on PAD

Quantitative results are presented in Tab. 2 and qual-
itative results of three scenes covering the whole vis-
ibility range of interest are presented in Fig. 5. In
Tab. 2b, we see that this time a prior defogging step
does not improve but rather impairs the stereo match-
ing performance of all baseline methods. Therefore,
the disparity results of baseline methods presented in
Fig. 5b directly use foggy stereo pairs as input.

In addition, we investigate how the performance
of all stereo matching methods varies with visibil-
ity. In Fig. 4 we see that our method clearly excels
in the depth RMSE for 20m visibility (4.5% better
than [23] and about 26.9% better than [8, 24, 28]). A
higher visibility gradually narrows down the perfor-
mance gap between ours and [8, 28], which is in line
with what can be observed from Fig. 5b.

4.3 Ablation Study
We conduct an ablation study on the PAD dataset to better understand how different modules
in our system contribute to defogging and stereo matching performance. Quantitative results
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(a

)D
ef

og
gi

ng
Method SSIM PSNR

DCP [22] 0.380 8.523
GRM [9] 0.404 8.732
NLD [1] 0.496 11.806
DehazeNet [6] 0.473 11.062
MSCNN [37] 0.519 12.023
PSD [10] 0.588 16.676
4KDehazing [49] 0.510 10.419

Ours 0.519 13.433

Ours (w = 1) 0.384 10.411
Ours (λt = 0) 0.526 13.458
Ours (w/o pp) 0.519 13.432
Ours (w/o tr) 0.352 10.072

(b
)S

te
re

o
m

at
ch

in
g

Method D1-all RMSE MAE SILog Sq Rel Abs Rel δ < 1.25 δ < 1.252 δ < 1.253

on
Is

Kuschk [24] 49.988 4.967 3.208 28.496 1.320 18.000 70.961 85.803 94.161
SGM [23] 42.515 3.832 2.518 21.377 0.786 14.191 78.496 92.250 98.464
PSMNet [8] 49.913 4.700 3.115 21.950 1.029 15.519 71.102 87.698 96.764
Lac-GwcNet [28] 38.637 4.266 2.671 22.084 0.921 13.563 76.881 89.227 95.653

on
P

SD
Js Kuschk [24] 52.449 5.131 3.345 29.669 1.440 18.994 69.346 84.966 93.681

SGM [23] 43.365 3.896 2.549 21.900 0.820 14.476 77.774 91.713 98.298
PSMNet [8] 54.165 5.084 3.430 24.182 1.224 17.136 67.514 85.350 95.095
Lac-GwcNet [28] 41.742 4.498 2.847 22.603 0.991 14.329 74.606 87.744 95.123

Ours 37.647 3.550 2.282 19.078 0.651 12.352 80.435 93.959 98.871

Ours (w = 1) 48.915 4.840 3.114 27.626 1.250 17.435 71.975 86.553 94.639
Ours (λt = 0) 42.765 4.233 2.701 22.636 0.893 14.476 75.953 89.987 97.739
Ours (w/o pp) 38.208 4.105 2.507 23.172 1.137 14.836 79.539 93.107 97.697

Table 2: Quantitative results on PAD. Ours performs the best/second best in all metrics.

Input left image DCP [22] GRM [9] NLD [1] DehazeNet [6]

vi
s
=

20
vi

s
=

30
vi

s
=

40

MSCNN [37] PSD [10] 4KDehazing [49] Ours Ground truth

vi
s
=

20
vi

s
=

30
vi

s
=

40

(a) Defogging results. Compared to the top two baseline methods [10, 37], ours is better at removing
fog from distant objects (blue rectangles) and preserving fine details (close-up of yellow rectangles).
Note that our defogged images are visually more appealing despite trailing behind [10] in metric values.

Kuschk [24] on Is SGM [23] on Is PSMNet [8] on Is Lac-GwcNet [28] on Is Ours Ground truth

vi
s
=

20
vi

s
=

30
vi

s
=

40

(b) Disparity results. [24]’s results contain a large number of outliers. [23]’s results exhibit strong
streaking artefacts. Our method preserves fine structures to a greater extent in extremely low visibilities
(red rectangles), whereas the two deep learning based approaches [8, 28] fail to do so. In slightly better
visibility (third row), [8, 28] start surpassing our method visually with sharper object edges at close
range, but still suffer from blob artefacts at distant objects (black rectangles).

Figure 5: Qualitative results on PAD
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are shown in the last four rows of Tab. 2a and the last three rows of Tab. 2b. Qualitative
results are illustrated in Fig. 6. We use w = 1 to denote the case in which a uniform weight
array (i.e. all ones) is used, λt = 0 to denote the case in which no depth cues from scattering
are used, w/o pp to denote the case without performing the disparity post-processing, and
w/o tr to denote the case without transmission refinement (i.e. t̄ is directly used to invert
Eq. (1) and recover J). We observe: a) by adopting the proposed non-uniform weighting
scheme, both stereo matching and defogging performances are significantly improved; b) by
employing depth cues from scattering, the stereo matching performance is moderately im-
proved but there is not much impact on the defogging results; c) the disparity post-processing
step greatly improves some depth error metrics such as SILog; we would like to point out
that our method demonstrates very competitive stereo matching performance in most metrics
even without the disparity post-processing; d) without the transmission refinement step, both
defogging metrics become worse.

w = 1 λt = 0 w/o pp w/o tr Full

same as Full

Figure 6: Qualitative results of ablation study on PAD

5 Conclusion
We have presented an approach within the framework of variational continuous optimisation
that addresses the problem of simultaneous stereo matching and defogging in low visibil-
ity. As opposed to sequentially performing defogging then stereo matching, we directly use
foggy images as the stereo matching input. Combining a depth error informed non-uniform
weighting scheme with an effective way of extracting depth cues from scattering via gradi-
ent alignment enables us to reconstruct accurate disparity maps. The depth information is
then used to assist image defogging. In comparison with methods based on deep learning,
we do not require a training dataset which in any event cannot generally be acquired in the
wild, as corresponding clear and degraded images cannot be acquired on the same scenes
with moving actors. Evaluated on both synthetic and real datasets, our method surpasses
comparative methods in all depth estimation metrics (up to 26.9% reduction in RMSE) and
produces visually more appealing defogged images, particularly in extremely poor visibil-
ities. For future work we consider: a) using motion information embedded in consecutive
frames and incorporating more matching constraints to improve depth estimation results;
b) adopting a more sophisticated fog model (e.g. blurring and fog inhomogeneity) to better
recover intensity images.
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