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In this supplemental material, we present algorithms, parameter setting, implementation,
the generation/selection procedure of data on which we perform evaluation, additional ex-
perimental results and limitations of our method.

1 The Generalised Condat-Vu Algorithm

The generalised Condat-Vu Algorithm [4, 10] is applied to solve the u minimisation problem
(i.e. Line 3 in Algorithm 1 in our paper). This is detailed in Algorithm 2, where ∗ denotes the
adjoint operator1, Π{P,Q} denote point-wise projections onto ℓ2 balls: ΠP (p) = p

max{1,∥p∥2/λs}
and ΠQ (q) = q

max{1,∥q∥2/λa} , ΠR denotes a point-wise projection onto the set [−λt ,λt ]
H×W×2,

and ΠZ denotes a point-wise projection onto the set [−ũ,1− ũ], which ensures u∈ [0,1]H×W .
Note that we apply a change of variable such that z = u− ũ before starting the iterative
algorithm and finally recover u after all iterations complete.

2 Disparity Post-processing

In Algorithm 3 we describe the disparity post-processing procedure which is applied to the
output of Algorithm 1 in our paper. Note that this post-processing step only affects disparities
in the leftmost region.
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1The adjoint of a discrete gradient operator with Neumann boundary conditions is a negative divergence operator
with Dirichlet boundary conditions: given ∇ : RH×W → RH×W×2 and ∇∇∇ : RH×W×2 → RH×W×4, we have ∇∗ :
RH×W×2→ RH×W and ∇∇∇

∗ : RH×W×4→ RH×W×2.
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Algorithm 2: The generalised Condat-Vu algorithm to solve the u minimisation
problem (i.e. Line 3 in Algorithm 1 in our paper)

Input: u(k), a(k), w, s(k), θ (k), ũ
Parameters : ρ , N
Output: u(k+1)

1 Initialisation: u(0) = u(k), v(0) = p(0) = r(0) = 0H×W×2, q(0) = 0H×W×4;
2 Lipschitz constant L = max{w(k)}/θ (k), dual and primal step sizes σ = ρ/(12+8), τ = 0.99/(L/2+ρ);
3 z(0) = u(0)− ũ;
4 for n = 0,1, . . . ,N do
5 z(n+1) = ΠZ

(
z(n)− τ

(
s(k)+ 1

θ (k) w◦ (z(n)+ ũ−a(k))+∇∗G
(

p(n)
)
+∇∗r(n)

))
;

6 v(n+1) = v(n)− τ

(
−G(p(n))+∇∇∇

∗q(n)
)

;

7 p(n+1) = ΠP

(
p(n)+σ

(
∇G

(
2z(n+1)− z(n)

)
+∇ũ−

(
2v(n+1)− v(n)

)))
;

8 q(n+1) = ΠQ

(
q(n)+σ∇∇∇

(
2v(n+1)− v(n)

))
;

9 r(n+1) = ΠR

(
r(n)+σ∇

(
2z(n+1)− z(n)

))
;

10 u(k+1) = z(N+1)+ ũ ;
11 return u(k+1)

Algorithm 3: Disparity post-processing
Input: Disparities uin ∈ RH×W

Parameters : Maximum disparity γmax
Output: Disparities uout ∈ RH×W

1 uout← uin ;
2 for h = 1,2, . . . ,H do
3 [umax, imax]← findMaxValueAndIndex(uout[h,1 : γmax +1]) ;
4 if imax > 1 then
5 uout[h,1 : imax−1]← umax ;

6 return uout

3 Parameter Setting and Implementation
The Census Transform [12] (CT) is applied to each colour channel for the Virtual KITTI
2 dataset [2] (VKITTI2) and to grayscale images for the Pixel-Accurate Depth dataset [5]
(PAD) because the images in the latter are much noisier. Γ is chosen to be {0,1, · · · ,127}
(i.e. γmax = 127) for VKITTI2 and {0,1, · · · ,63} (i.e. γmax = 63) for PAD.

The following parameters are chosen empirically and fixed in all of our experiments. We
use a window size of 7 in CT. In the anisotropic diffusion operator calculation: tensor mag-
nitude parameter is 9 and sharpness parameter is 0.85. In the adaptive support-weight [11]
calculation: the support window size is 15, the similarity parameter is 5 and the proximity
parameter is 7.5. In Algorithm 1 in our paper: λd = 0.4, λs = 1, λa = 8, λt = 0.01, α = 0.001
and K = 80. In Algorithm 2: ρ = 10 and N = 150. In the photo-inconsistency check: ε = 5.
In the transmission refinement: µ = 0.003.

The algorithm is implemented (unoptimised) in MATLAB R2022a on a laptop with
Intel® Core™ i7-10750H CPU @2.60GHz and NVIDIA® GeForce® RTX 2070 GPU with
Max-Q Design. MATLAB’s GPU computing is used to parallelise array operations. The
computational time is around 92 seconds for foggy stereo matching and around 1.5 seconds
for defogging, given an input image size of 494×1032.
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4 Data for Evaluation
We describe how we generate/select data from VKITTI2 and PAD on which we perform
evaluation.

4.1 Virtual KITTI 2
VKITTI2 contains five sequences of synthetic road scenes. We first select clear images (only
under the overcast weather condition to better resemble real foggy situations, as [7] does)
every ten frames in all five sequences. We then synthesise foggy images according to the at-
mospheric scattering model using the dense ground truth depth maps. vis and A are randomly
drawn from the uniform distribution in the intervals (20,40) and (0.7,1) respectively. The
above procedure generates 214 foggy image pairs in total, on which we perform evaluation.

4.2 Pixel-Accurate Depth Dataset
PAD contains four real static scenes recorded in a weather chamber under various fog visi-
bility conditions. Dense ground truth depth of each scene is available because a Leica scan
station was used and multiple measurements were accumulated. Note that this is a very chal-
lenging dataset because the fog appears to be highly inhomogeneous and the foggy images
are very noisy (possibly due to high ISO values). We choose daytime foggy images of the
first three scenes (the fourth scene is not used because the right frames all seem severely
blurred) from the following five visibilities in meters {20,25,30,35,40}, hence 150 foggy
image pairs in total (ten samples per scene per visibility) for evaluation. We crop each origi-
nal image such that only the central scene is reserved and its surrounding pixels are discarded.

5 Additional Experiments
We report results of some additional experiments.

5.1 FRIDA3

Task Metric [9] Ours

Stereo matching 3PE-all 11.810 9.330
EPE 4.170 1.308

Defogging PSNR 16.590 15.438
SSIM 0.839 0.848

Table 3: Results on FRIDA3

In addition to the results provided in our paper, we would
also like to compare our method with methods such as [8, 9].
However, to our best knowledge, the source code of neither
is published. Moreover, their evaluation was performed on
different datasets from ours. In order to facilitate a direct
comparison with [9], we evaluate our method (using the same
experimental setup as VKITTI2, see Sec. 3) on FRIDA3 [3].
Results are shown in Tab. 3.

5.2 Sensitivity to t̃

All experiments in our paper use [6] to estimate the initial transmission map t̃. In Tab. 4
we show results of our method on VKITTI2 if [1] is used to obtain t̃. We observe that the
new results are close to the original ones shown in Tab. 1 in our paper, demonstrating our
method’s robustness to t̃ from different methods.
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Method SSIM PSNR

Ours (t̃ from [1]) 0.635 10.564

(a) Defogging

Method D1-all RMSE MAE SILog Sq Rel Abs Rel δ < 1.25 δ < 1.252 δ < 1.253

Ours (t̃ from [1]) 8.849 26.150 7.309 25.599 4.212 8.790 86.916 92.392 95.501

(b) Stereo matching

Table 4: Results on VKITTI2 if [1] is used to estimate t̃

6 Limitations
Although our method demonstrates strong performances, it also has limitations. In terms
of defogging, like most existing methods, we assume the scattering coefficient β to be a
global constant, thereby failing to deal with inhomogeneous fog very well and leaving visible
residual of fog in the defogged image in such case (see the second row last column of Fig. 6
in our paper). As for stereo matching, because of the introduction of the regularisation term
λt ∥∇(u− ũ)∥1,1, false discontinuities in the estimated transmission map t̃ can cause false
disparity (hence depth) discontinuities in our method (see the zebra crossing area in the first
row last column of Fig. 6 in our paper).
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