Sparse in Space and Time: Audio-visual Synchronisation with Trainable Selectors Weidi Xie^{2,3} Esa Rahtu¹ Andrew Zisserman³ Vladimir lashin¹

Goal

Audio-visual synchronisation of videos with sparse cues

Challenges

- Sync signal is rare \rightarrow longer input sequences
- Absence of a dataset with sparse sync cues
- Hidden temporal artefacts in data \rightarrow model learns a shortcut

Contributions

- 1. Novel multi-modal transformer architecture, **SparseSync** Scales linearly with respect to input length
 - Predicts the offset size
- 2. Study of the video codec compression artefacts
 - MPEG-4 Part 2 (mpeg4) and AAC leak temporal artefacts
 - Recommendation: avoid mpeg4 and use H.264, 16kHz AAC is ok
- 3. Video dataset with sparse sync signals, VGGSound-Sparse
 - We also suggest benchmarking future models on "uncropped" LRS3

Datasets

VGGSound-Sparse

- New video dataset with sparse sync signals
- 12 classes from VGGSound (6.5k videos, 10 seconds)
- e.g. dog barking, chopping wood, striking bowling
- "Sparse in time and sparse in space"

LRS3-H.264 (uncropped scene)

- 58k clips from 4.8k TED presentations
- As LRS3 (Afouras et al., 2018) but uncropped and in H.264
- "Sparse in space but dense in time"

¹Tampere University ²Shanghai Jiao Tong University ³University of Oxford

Dense vs. Sparse Sync Signals

- Easy: talking heads interviews (left)
- Difficult: open-domain classes with sparse sync signal (right)

Overview

- 1. Features are extracted from spectrogram and RGB frames
- 2. Trainable selectors *query* sync cues from audio and visual features via cross-attention
- 3. Audio and visual tokens are concatenated
- 4. Sync transformer predicts the temporal offset for synchronisation

Training

- Offset classification: (-2.0, -1.8, ..., 0.0, ..., +2.0) 21 classes
- Offsets are random and made on-the-fly
- 5-second clips from 10-second videos
- Pre-train on dense signals (LRS3-H.264) \rightarrow fine-tune on sparse signals (VGGSound-Sparse)

BMVC 2022

Synchronising Videos with Sparse Signals

Train a model to predict the start of the crop

Results

	LRS3 (no crop) VGGS-Sparse Accuracy Accuracy		
AVST _{dec}	83.1	29.3	
Ours	96.9	44.3	

 $AVST_{dec}$ is an adaptation of (Chen *et al.*, 2021)

Improving Performance

Increase Input Length

Length (sec.)	3	4	5	6	7
Accuracy	36.8	43.0	44.3	45.6	46.5

Pre-training on non-sparse data-classes

re-training	Accuracy
RS3 (no crop) + VGGSound-Sparse	44.3
RS3 (no crop) + VGGSound (full)	51.2

Evaluated on test-set of VGGSound-Sparse

Temporal Artefacts

the model should not train but it does both audio and visual streams are affected

vladimir.iashin at tuni.fi