Sparse in Space and Time: Audio-visual Synchronisation with Trainable Selectors

Vladimir Iashin 1, Weidi Xie 2,3, Esa Rahtu 1, Andrew Zisserman 3

1 Tampere University 2 Shanghai Jiao Tong University 3 University of Oxford

Goal

Audio-visual synchronisation of videos with sparse cues

Challenges

- Sync signal is rare → longer input sequences
- Absence of a dataset with sparse sync cues
- Hidden temporal artefacts in data → model learns a shortcut

Contributions

1. Novel multi-modal transformer architecture, SparseSync
 - Scales linearly with respect to input length
 - Predicts the offset size
2. Study of the video codec compression artefacts
 - MPEG-4 Part 2 (mpeg4) and AAC leak temporal artefacts
 - Recommendation: avoid mpeg4 and use H.264, 16kHz AAC is ok
3. Video dataset with sparse sync signals, VGGSound-Sparse
 - We also suggest benchmarking future models on "uncropped" LRS3

Datasets

VGGSound-Sparse

- New video dataset with sparse sync signals
- 12 classes from VGGSound (6.5k videos, 10 seconds)
- e.g. dog barking, chopping wood, striking bowling
- *Sparse in time and sparse in space*

LRS3-H.264 (uncropped scene)

- 58k clips from 4.8k TED presentations
- As LRS3 (Afouras et al., 2018) but uncropped and in H.264
- *Sparse in space but dense in time*

Overview

1. Features are extracted from spectrogram and RGB frames
2. Trainable selectors query sync cues from audio and visual features via cross-attention
3. Audio and visual tokens are concatenated
4. Sync transformer predicts the temporal offset for synchronisation

Training

- Offset classification: (−2.0, −1.8, ..., 0.0, ..., +2.0) → 21 classes
- Offsets are random and made on-the-fly
- 5-second clips from 10-second videos
- Pre-train on dense signals (LRS3-H.264) → fine-tune on sparse signals (VGGSound-Sparse)

Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>AVST dec</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRS3 (no crop)</td>
<td>83.1</td>
<td>96.9</td>
</tr>
<tr>
<td>VGGSound-Sparse</td>
<td>29.3</td>
<td>44.3</td>
</tr>
</tbody>
</table>

AVST dec is an adaptation of (Chen et al., 2021)

Improving Performance

<table>
<thead>
<tr>
<th>Length (sec.)</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>36.8</td>
</tr>
<tr>
<td>4</td>
<td>43.0</td>
</tr>
<tr>
<td>5</td>
<td>43.4</td>
</tr>
<tr>
<td>6</td>
<td>45.6</td>
</tr>
<tr>
<td>7</td>
<td>46.5</td>
</tr>
</tbody>
</table>

Pre-training on non-sparse data-classes

<table>
<thead>
<tr>
<th>Pre-training</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRS3 (no crop) + VGGSound-Sparse</td>
<td>44.3</td>
</tr>
<tr>
<td>LRS3 (no crop) + VGGSound (full)</td>
<td>51.2</td>
</tr>
</tbody>
</table>

 Evaluated on test-set of VGGSound-Sparse

Temporal Artefacts

Train a model to predict the start of the crop

- the model should not train but it does
- both audio and visual streams are affected

v-iashin.github.io/SparseSync

BMVC 2022

vladimir.iashin at tuni.fi