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Abstract

Automated crowd counting has made remarkable progress recently in computer vi-
sion thanks to the development of CNNs. However, this application area has run into
bottlenecks since CNNs, by their nature, are limited by locally attentive receptive fields
and are incapable of modelling larger-scale dependencies. To address this problem, we
introduce a multi-scale transformer-based crowd-counting network, termed Crowd U-
Transformer (CUT) which extracts and aggregates semantic and spatial features from
multiple levels. In this design, we use crowd segmentation as an attention module to
gain fine-grained features. Also, we propose a loss function that better focuses on the
counting performance in the foreground area. Experimental results on four widely used
benchmarks are presented and our method shows state-of-the-art performances.

1 Introduction
Crowd counting, which refers to the automated counting of a multitude of people in an image
or video, is a challenging task in the field of computer vision. Considering the ubiquity
of digital imagery and increasing frequency of large gatherings of people, the analysis of
crowded scenes has become highly practically important. Accurate estimation of their size
would be beneficial in various applications, including urban planning, disease control, traffic
surveillance, wildlife monitoring and disaster management [34].

However, the practical use of crowd counting is currently limited since the accuracy of
automated counting falls short of many application requirements. The primary difficulties
are large scale variations of objects and cluttered scene layouts. The mainstream methods
rely on Convolutional Neural Networks (CNNs) to predict a density map for an input im-
age, and then the total count is obtained by subsequent integration over that map. While
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CNNs are equipped with the intrinsic inductive bias [52], and hence are good at modelling
local feature structures - they are however disadvantaged by receptive field limitations and a
poor ability to capture long-range dependencies, which have both proved important in crowd
counting [14]. Researchers proposed some methods to mitigate these problems, such as
the multi-scale mechanism [24, 55] and auxiliary task learning [29], but these do not fully
resolve the problems.

Transformers have recently become an increasingly popular architecture in computer
vision community. Its global self-attention mechanism allows capture of long-range depen-
dencies and the mapping a global receptive field – exactly what CNNs lack. Therefore, a
number of transformer based methods have shown promising performances in traditional
vision tasks like classification [9, 49], detection [2] and segmentation [57].

The advantages of transformers complement the limitations of CNNs, hence in this paper,
we propose a multi-scale transformer based network for improved automated crowd count-
ing. Our architectural basis is formed by the pyramid vision transformer (PvT) [6, 49] and
we follow the U-shaped design to aggregate features from different levels. Moreover, we use
a Segmentation As Attention Module (SAAM) that leverages both the focus provided by the
crowd segmentation task and the global self-attention from the transformer layers, to gain
fine-grained features with abundant semantic information. Our work explores the potential
of combining transformer structure with traditional pseudo-density maps for crowd counting
tasks. The proposed model achieves the state-of-the-art results on several benchmarks in-
cluding ShanghaiTech, UCF-QNRF, JHU-Crowd++ and NWPU-Crowd which demonstrates
the efficacy of this combination.

The main contributions of this paper are summarized as follows:
• We propose a ‘U-shaped’ design [30] of multi-scale Transformer network for crowd

counting, we refer to as Crowd U-Transformer (CUT). Our design effectively improves
the model’s performance in the presence of large scale variations of objects.

• We introduce an attention module, SAAM, which leverages the crowd segmentation
results and a simple transformer block to extract fine-grained features in crowd re-
gions.

• We design a new loss function for supervising the regression which provides a signif-
icant improvement on counting accuracy over previous attempts.

2 Related work

2.1 Crowd Counting

Modern crowd counting methods can be roughly categorized into three groups: detection-
based [19, 22], direct regression-based [3, 4, 46] and density regression based approaches [13,
35]. To detect people in a crowd requires bounding box annotations, but such annotations
are not only hard to obtain, but also imprecise due to the severe occlusion in crowd scenes.
Therefore, the performance of such methods is limited. Also, without considering spatial an-
notations, the performance of direct regression is still unsatisfactory. The current mainstream
approaches are based on density regression, which predict a pseudo-density map of an image
and obtains the count by effectively summing the density values. Such approaches have been
well integrated with the CNN framework and achieved significant performance gains. Var-
ious methods have been proposed to enhance the capabilities of CNNs for crowd counting,
which includes multi-scale network design, auxiliary tasks and attention mechanism - whose
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details are addressed in turn.
Multi-scale network design: This kind of approach is focused on improving CNNs’

capabilities in handling large scale variations of crowds. One popular design is the multi-
column network [1, 31, 55], which attempts to extract features of crowds at different scales
by exploiting multi-columns of stacked CNNs with different receptive fields. Many works [24]
adopt a single column network with pyramid design which aggregates features from different
levels of the backbone network to obtain scale adaption. SASNet [38] uses a feature pyra-
mid network to learn the relevancy across scales and feature levels. Its final prediction is a
weighted average of individual predictions from different levels. TEDnet [12] hierarchically
aggregates features from different levels which helps it learn multi-scale representations.
Moreover, multi-scale blobs [32, 54] are frequently inserted in the single column neural
networks to increase receptive field flexibility.

Auxiliary tasks: Object localization [10, 18, 50] and crowd segmentation [11, 29] are
introduced into CNN models as a means of better capturing global semantic information.
RAZNet [18] acquires better spatial information by adding a localization branch along with
a zooming mechanism. ASNet [11] utilizes crowd segmentation to distinguish regions at
different density levels, and applies corresponding scaling factors to different regions to
improve counting accuracy.

Attention mechanism: The attention mechanism has been widely incorporated in crowd
counting models [18, 27, 29] since it enables the model to focus on important regions and
to some extent helps address scale and density variations. SDANet [27] reduces the im-
pact of the background on counting performance by leveraging an attention mask generated
from low-level features. CFANet [29] exploits a from-coarse-to-fine attention mechanism
to better fuse features from different levels while focusing on the crowd regions.

More recent works [23, 25, 45] focus on designing novel loss function to directly have
point annotations for supervision. Although significant progress has been achieved under
CNN framework, the limited receptive field of CNN has also constrained the development
of crowd counting.

2.2 Vision transformer

The transformer was originally designed for Natural Language Processing (NLP). With a
global attention mechanism, the transformer is able to model long range dependencies and
has been widely used in this field [7, 8, 42]. Inspired by the success of transformer in NLP
tasks, Dosovitskiy et al. [9] proposed the first vision transformer (ViT), achieving promising
results on image classification tasks. Since then, several vision transformer structures have
been proposed for different downstream vision tasks such as classification [6, 49, 53], detec-
tion [2], and segmentation [57]. Currently, the study of applying transformer structures in
crowd counting is still in an initial stage. The earliest study [15] performs weakly supervised
learning to directly regress the count of an image with ViT. Later, Sun et al. [40] designed the
first point-supervised crowd counting model which utilizes T2T-ViT [53] as a backbone to
extract features. At about the same time, CCTrans [41] was proposed, which adopts Twins-
SVT [6] as the backbone structure and designs a multi-scale blob to better handle scale and
density variances. Both of these methods use point maps for supervision and adopt optimal
transport loss [45]. A major disadvantage of these two works is they require an image to
be cut into patches during inference stage to match the image size used in training, which
can result in redundant counts at the boundary. Our work resolves this problem and fills in
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Figure 1: The pipeline of the proposed CUT. We have Twins-PCPVT [6] as the backbone
network to extract multi-scale features. Feature maps from different levels are gradually
aggregated under supervision. The final density map is predicted from the last fused feature
maps.

the gap of having density maps as the learning target under the transformer framework and
shows the protential of transformers in crowd counting.

3 Proposed method

The overall architecture of our CUT is presented in Figure 1. An input image is first fed into
the backbone Twins-PCPVT to extract multi-level features. Inspired by the U-shape design,
we progressively fuse feature maps from different levels to recover the subsampling effected
information loss caused by the backbone. Supervision is performed on each level. Crowd
segmentation is introduced into the framework to guide the regression. The density map
predicted from the last fused feature map is used as the final estimate. During the inference
stage, our method only needs to scale the height and width of the input image to a minimum
divisible by 32, which makes it much easier to use.

3.1 U-shaped multi-scale transformer architecture

To facilitate the modelling of long-term dependencies, the backbone of our network is formed
by Twins-PCPVT [6] which extracts multi-scale features. This is an improved version of the
pyramid vision transformer [49] which replaces absolute position encoding with conditional
position encoding (CPE). The latter is more suitable for crowd counting since it enables the
model to accept input images of varying sizes. The model itself has four stages and each
stage has a similar architecture. At the start of each stage, the input image/feature map is
divided into non-overlapping patches and the output is fed into a convolutional projection,
which is then flattened for passing through the transformer layers. CPE is added after the
first transformer layer of each stage. Our CPE is generated as follows: the flattened tokens
are first reshaped back to a 2D feature map and then the result is fed into a single convolu-
tional layer. Finally, the generated CPE is added on to the corresponding token. The output
feature maps F1,F2,F3 and F4 from four stages are 1

4 ,
1
8 ,

1
16 and 1

32 of the original height and
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Figure 2: (a) The structure of the basic transformer layer in our model, proposed in PvT [49],
which contains a SRA and FFN unit.

⊕
denotes element-wise addition. (b) The structure

of the proposed Segmentation as attention module. In convolutional blocks, R is short for
ReLU function while S is Sigmoid function.

⊙
denotes element-wise multiplication.

width of the input, respectively. We fuse feature maps F4,F3 and F2 in turn with CNN-based
decoders to equip the final feature map with rich semantic and spatial information.

Transformer layer: The transformer layer of PcPvT is composed of the spatial-reduction
attention (SRA) and the fully connected feed forward network (FFN). Differing from the
multi-head self-attention, which the original transformer applied [42], SRA reduces the spa-
tial scale of K (key) and V (value) with a convolutional operation which largely lowers the
computational complexity. We present this structure in Figure 2(a). The output of a trans-
former layer can be written as follows:

T
′

i = SRA(Ti−1)+Ti−1 i = 1,2, ..., tN , (1)

Ti = FFN(T
′

i )+T
′

i i = 1,2, ..., tN , (2)

where tN is the number of transformer layers in a stage and Ti is the output of layer i.
Multi-level feature aggregation: The feature maps extracted by the transformer back-

bone are multi-scale. High-level feature maps typically contain more semantic information
than low-level feature maps; the content of the latter comprising finer detail and local appear-
ance information. To obtain a feature map having both rich semantic and spatial information,
we follow the popular ‘U-shaped’ design and gradually fuse features from different stages.

Specifically, we first unify the channels of the output feature maps from the backbone to
256 with convolutional projections, noting that only feature maps from the last three stages
described previously are used here. For a feature map F

′
i and the feature map in its previous

stage F
′
i−1, the expression of the fusion procedure can be written as follows:

F i,i−1 = f ([UP(Fi
′),F

′
i−1])+F

′
i−1, (3)

where f (·) is a 3 × 3 convolutional operation with ReLU as activation function, [·] denotes
the concatenation layer and UP(·) represents up-sampling by a ratio of 2. We use the skip
connection here to preserve spatial information better.

3.2 Segmentation as attention module
The overall structure of SAAM is shown in Figure 2(b). We introduce crowd segmentation
to gain extra focus for an image. The process is detailed here. For a given intermediate
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feature map F ∈ RC×W×H , we first feed it into three consecutive convolutional layers to
get a probability map. Note, the labels (Sgt ) for segmentation task is generated from the
down-sampled ground-truth density map (Dgt ).

Sgt = 1(Dgt > ε), (4)

where 1(·) is the indicator function and ε is a threshold which is set as 1e-3 here. The
predicted probability map is then converted to a binary mask and applied on the intermediate
feature maps. The result is fed into a simple transformer block, followed by a skip connection
with F .

Previous methods [26, 29, 33] which also add segmentation as auxiliary task, tend to
directly assign the predicted probability as weight to according pixels. However, such an
approach is highly dependent on the quality of the segmentation result since it posits that the
probability is proportional to the density values. Meanwhile, the segmentation results may
be inaccurate, especially when using the generated density maps for supervision [43] as the
precise boundary of foreground and background is normally unclear. Moreover, the point
annotations themselves are sometimes inaccurate. Bad segmentation results on boundary
pixels can result in small values on the feature maps of corresponding position, thus affecting
the density predictions. Our method can alleviate this problem somewhat – we are not scaling
the values in ‘low-probability’ regions but instead leveraging transformer layers to model the
relationships between these crowd regions, which in turn get better fine-grain features.

3.3 Loss design
Supervisions are provided on all three levels and for each level l, we have loss function Ll ,
that can be written as:

Ll = Ll
S +Ll

R l = 2,3 and 4, (5)

where LS and LR supervise the segmentation and the regression tasks respectively. In order to
focus learning on misclassified samples, LS adopts pixel-level focal loss [17] and is defined
as follows:

LS =− ∑
i∈Sgt

li(1− pi)
γ log(pi)+(1− li)pγ

i log(1− pi), (6)

where i denotes the pixel within Sgt , and li and pi represent the actual label of the pixel and
the predicted probability of that pixel being foreground, respectively; γ is the modulating
factor.

We use LR to supervise the generation of the density map. Previous density map-based
methods often adopt Euclidean loss for this purpose [14, 20, 55]. However, such choice
has two weaknesses: (1) it assumes pixel-wise independent which ignores the local relation
in the density map, and (2) it results in excessively smooth predictions [28] as it ignores
the common imbalance between low-density and high-density distributions. To alleviate
this problem, we propose the following loss function, which emphasises the importance of
counting accuracy over dense regions:

LR = SL(Dp ⊙Sgt ,Dgt ⊙Sgt)+λ ·LTV (Dp,Dgt), (7)

where SL represents the structural loss [29], Dp indicates the predicted density map, ⊙ is the
element-wise multiplication, λ is the tunable hyper-parameter, and LTV is the total variation
loss [45]. SL leverages SSIM [51] index and the pooling operation to ensure consistency of

Citation
Citation
{Meng, Bridge, Wei, Zhao, Qiao, Yang, Huang, and Zheng} 2022

Citation
Citation
{Rong and Li} 2021

Citation
Citation
{Shi, Mettes, and Snoek} 2019

Citation
Citation
{Wan and Chan} 2019

Citation
Citation
{Lin, Goyal, Girshick, He, and Dollar} 2017

Citation
Citation
{Li, Zhang, and Chen} 2018

Citation
Citation
{Liu, Salzmann, and Fua} 2019{}

Citation
Citation
{Zhang, Zhou, Chen, Gao, and Ma} 2016{}

Citation
Citation
{Modolo, Shuai, Varior, and Tighe} 2021

Citation
Citation
{Rong and Li} 2021

Citation
Citation
{Wang, Liu, Samaras, and Hoai} 2020{}

Citation
Citation
{Wang, Bovik, Sheikh, and Simoncelli} 2004



QIAN, ET AL.: CROWD U-TRANSFORMER 7

local relations and the counting accuracy, respectively. By masking the low-density regions
in SL, the dense regions can be approximated well since the imbalance problem is somewhat
alleviated. Here, we employ a 3×3 Gaussian kernel to calculate SSIM index. LTV is adopted
here to provide supervision on low-density regions. λ is set as 0.01 in our experiments.

The overall loss function is a combination of Ll from three levels:

Ltotal = ∑
4
l=2 Ll

S +α ∑
4
l=3 Ll

R +L2
R. (8)

α is a factor used to lower the weight of loss from intermediate levels and its value is set to
0.5.

4 Experiments
In this section, we first introduce the datasets that are used in the experiments and the cor-
responding experimental settings, followed by an ablation study. Finally, we compare our
results with the state-of-the-art methods.

4.1 Datasets
To demonstrate the effectiveness of our method, we conduct extensive experiments on four
largest crowd counting datasets: ShanghaiTech [56], UCF-QNRF [10], JHU-Crowd++ [36]
and NWPU-Crowd [48]. We succinctly summarize these:

ShanghaiTech A contains 482 images, collected from internet. 300 images are used for
training and the remaining 182 images are used for testing. The number of annotations in an
image varies from 33 to 3139.

UCF-QNRF consists of 1535 high resolution images with around 1.25 million annota-
tions. The large diversity in densities and scenes makes it challenging. The training set has
1201 images and the remaining 304 images are in the testing set.

JHU-Crowd++ is a large scale crowd counting dataset that includes 4372 images. 2272
images are divided into the training set, 500 images are in the validation set and the remaining
1600 images are used for testing. A considerable number of images in this dataset are with
adverse weather conditions and illumination variations.

NWPU-Crowd is the current largest crowd counting dataset which consists of 5109
high-resolution images with over 2.13 million annotations. The number of people in an
image ranges from 0 to 20033. Moreover, negative samples are introduced in this dataset
which refers to images without people or has similar texture as crowd scenes. 3109 images
are used for training, 500 images are for validation and the remaining are for testing.

4.2 Experimental settings
Implement details: Following [14], we generate the ground-truth density map by using
geometry-adaptive kernels. The transformer backbone is initialized with the official Twins-
PCPVT-Large which has been pretrained on ImageNet. The drop path rate is set to 0.45
for the backbone. We only adopt random horizontal flipping and random cropping as image
augmentation techniques. In addition, we limit the longer side of each image within 1920
pixels in all datasets. Note, this image resolution is the lowest among previous transformer-
based methods. AdamW is used to optimize our model. Other settings vary with datasets
and are detailed in Table 1.
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Table 1: The detailed training settings for different datasets.
Dataset learning rate batch size cropping size γ

ShanghaiTech A 1e-5 4 256 ×256 4
UCF-QNRF 1e-4 8 512 ×512 2
JHU-Crowd++ 1e-5 8 512 ×512 1
NWPU-Crowd 1e-5 8 512 ×512 2

Evaluation metrics: To evaluate the performance of our method, we adopt two commonly
used metrics: Mean Absolute Error (MAE) and Mean Squared Error (MSE).

4.3 Ablation studies

We conduct extensive ablation studies on ShanghaiTech A (SHA) and UCF-QNRF to ana-
lyze the contribution of each component in our method.

Table 2: The Ablation study on multi-level supervision (MLS).
SHA UCF-QNRF

MAE MSE MAE MSE
w/o MLS 54.0 88.1 79.1 138.1
Ours 51.9 79.1 78.4 135.6

Effectiveness of multi-level supervision: We perform an experiment to investigate the
necessity of intermediate-level supervision by removing supervisions on both levels. The
result is presented in Table.2. With supervisions on mid-level density maps, MAE and MSE
are improved by 3.8% and 10.2% on SHA, 0.9% and 1.8% on UCF-QNRF, respectively.
Therefore, mid-level supervisions could enhance the robustness of intermediate feature maps
and help with the final density regression, especially for small datasets.

Table 3: Ablation study on SAAM.
SHA UCF-QNRF

MAE MSE MAE MSE
w/o SAAM 54.2 85.9 82.1 144.2
PAW [29] 53.6 82.5 80.6 146.2
Ours 51.9 79.1 78.4 135.6

Table 4: Ablation study on loss function.
SHA UCF-QNRF

MAE MSE MAE MSE
BSL [29] 56.5 90.3 87.4 144.3
Ours 51.9 79.1 78.4 135.6

Effectiveness of SAAM: We first perform an experiment where SAAM is totally re-
moved from the model. Then, to further demonstrate its effectiveness over traditional ‘prob-
ability as weight’ (PAW) approach, we perform another experiment where probability map is
directly applied on the intermediate feature maps. As shown in Table 3, solid improvement
on MAE and MSE is observed on both datasets by adding SAAM. Moreover, our method is
better than the previous PAW approach. Specifically, MAE is reduced by 3.2% and 2.7% on
SHA and UCF-QNRF, respectively. MSE is also reduced by 4.1% and 7.3%, respectively.

Effectiveness of loss function: We compare our loss design with Rong and Li’s BSL [29]
by substituting LR at each level with their settings. The result is shown in Table 4 which
shows that our method effects a significant improvement of counting accuracy. In particular,
MAE and MSE are reduced by 8.1% and 12.4% on SHA, 10.3% and 6.0% on UCF-QNRF.
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Table 5: Performance comparison with the state of the art models on ShanghaiTech A, UCF-
QNRF, JHU-Crowd++ and NWPU. The best and the second best performance are shown in
bold and underlined, respectively.

Model Label level SHA UCF-QNRF JHU-Crowd++ NWPU
MAE MSE MAE MSE MAE MSE MAE MSE

MCNN[55] (CVPR16) density map 110.2 173.2 277 426 188.9 483.4 232.5 714.6
CSRNet[14] (CVPR18) density map 68.2 115.0 - - 121.3 387.8 121.3 387.8
SANet[1] (ECCV18) density map 67.0 104.5 - - 91.1 320.4 - -
CAN[20] (CVPR19) density map 62.3 100.0 107.0 183.0 100.1 314.0 106.3 386.5
SFCN[47] (CVPR19) density map 64.8 107.5 102.0 171.4 77.5 297.6 - -
BL[23] (ICCV19) point map 62.8 101.8 88.7 154.8 75.0 299.9 105.4 454.2
ASNet[11] (CVPR20) density map 57.8 90.1 91.6 159.7 - - - -
AMRNet[21] (ECCV20) density map 61.5 98.3 86.6 152.2 - - - -
DPN-IPSM[24] (ACMMM20) point map 58.1 91.7 84.7 147.2 - - - -
DM-Count[45] (NIPS20) point map 59.7 95.7 85.6 148.3 - - 88.4 388.6
UOT[25] (AAAI21) point map 58.1 95.9 84.3 142.3 60.5 252.7 87.8 387.5
S3[16] (IJCAI21) point map 57.0 96.0 80.6 139.8 59.4 244.0 - -
GL[44] (CVPR21) point map 61.3 95.4 84.3 147.5 59.9 259.5 79.3 346.1
D2CNet[5] (IEEE-TIP21) density map 57.2 93.0 81.7 137.9 73.7 292.5 85.5 361.5
CFANet[29] (WACV21) density map 56.1 89.6 89.0 152.3 - - - -
SASNet[39] (AAAI21) density map 53.6 88.4 85.2 147.3 - - - -
P2PNet[37] (ICCV21) point map 52.7 85.1 85.3 154.5 - - 72.6 331.6
BCCT[40] (arXiv21) point map 53.1 82.2 83.8 143.4 54.8 208.5 82.0 366.9
CCTrans[41] (arXiv21) point map 52.3 84.9 82.8 142.3 - - 69.3 299.4
CUT(ours) density map 51.9 79.1 78.4 135.6 54.3 229.1 69.3 304.0

Figure 3: Visualizations of CUT on ShanghaiTech A. The first row are the input images
and their corresponding estimated density maps are given in second row. ‘GT’ represents
ground-truth count while ‘Pred’ means predicted count.

4.4 Comparisons with the state of the art

We evaluate the performance of our method on the aforementioned four datasets and compare
our method’s performance with the current state-of-the-art crowd counting models. The
results are shown in Table 5. Visualizations of our CUT on SHA are shown in Figure 3.

Overall, our method establishes the new state-of-the-art overall and convincingly out-
performs the current best density map-based method on all four benchmarks. On SHA, our
method achieves better results than any reported in the existing literature. On UCF-QNRF,
compared with the second best method CCTrans [41], CUT reduces MAE and MSE by 4.4
and 6.7, respectively. CUT also performs well on large-scale datasets. We achieve com-
parable performance of the current state-of-the-art work BCCT [40] and CCTrans [41] on
JHU-Crowd++ and NWPU-Crowd, respectively.
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5 Conclusion
In this paper, we proposed a crowd counting method, CUT, which utilises a transformer
backbone for feature extraction. Using a U-shape design, CUT progressively aggregates
multi-level features and recovers resolution. We used a segmentation based attention mod-
ule ‘SAAM’ to further obtain fine-grained features. We designed a new loss function which
shows a major performance improvement over the previous structural loss. Extensive exper-
iments have shown our model achieves the state of the art performance on several popular
crowd counting benchmarks.
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