

<u>TLDR</u>: We provide a new synthetic dataset with multiple uncertainty sources for autonomous drivin in order to better simulate and evaluate aleatoric uncertainty (domain-shift caused by unknow weather conditions) and epistemic uncertainty (Out of-Distribution samples).

1/ Motivation and contributions

Motivation:

(1). Disentangling the different types and sources of uncertainty is non trivial for most datasets, especially s there is no ground truth for uncertainty

(2). Adverse weather conditions of varying intensities usually under-represented in both training and test set public datasets.

Contributions:

(1). MUAD: a new automotive dataset with annotations multiple tasks and multiple uncertainty sources.

(2). A wide range of benchmarks on MUAD dataset for multiple computer vision tasks and settings to further support research in this area.

(3). An extensive study on uncertainty quantification for 2D output tasks for recent Transformer-based architectures.

Download Dataset:

Scan the QR code on the right and fill the form, then download link will be permanently provided. (Test sets will be fully provided after the challenge.)

MUAD Challenge:

MUAD Uncertainty Estimation for Semantic Segmentation Challenge is held on CodaLab, feel free to participate.

MUAD: Multiple Uncertainties for Autonomous Driving, a benchmark for multiple uncertainty types and tasks

Giann	i Franchi ¹ *, Xuanlong Yu ^{1,2} *	, Andrei Bursuc ³ , An
ng	¹ U2IS, ENSTA Paris, IPP ² SA	Emanuel Aldea TIE, Paris-Saclay Univ
t-	2/ Dataset Overview: 10413 annotated images: 3420 images in the train set, 492 validation set and 6501 in the test day images and 1/3 night images	in the t set. 2/3 being
sinco	3 types of adversity conditions with 2 intensity levels: Fog, Rain, Snow	7 test sets: Normal sets Normal set overhead su OOD set
Since	1024×2048 high resolution images	Low adv. Set High adv. Set Low adv. with OOD set
are ts in	21 classes: 19 ID classes (same as Cityscapes), 2 OOD classes (object anomalies and animals)	Photorealistic rendering Sky: a physical model of the, the factors includes
s for	4 supported tasks: Semantic segmentation Depth estimation Object detection 2D/3D	Rain and snow: the falli raindrops are chosen ad real rain and snow.
r	Instance segmentation <u>3/ Experiment results:</u>	Fog: a full volumetric ap simulation where scatte considered.

Semantic segmentation:

Monocular depth estimation:

			normal s	et			low ac	dv. without	t OOD set			high a	dv. withou	t OOD set			norm	nal set over	head sun				OOD so	et			low	adv. with (OOD set			high	adv. with (OOD set	
Methods		Depth res	ults	Uncertai	nty results		Depth resu	ilts	Uncertai	nty results		Depth resu	ilts	Uncertai	nty results		Depth res	ults	Uncertai	inty results	6	Depth resu	ılts	Uncertai	nty results		Depth resu	ults	Uncertai	nty results		Depth resu	ılts	Uncertai	nty results
	d1 ↑	AbsRel↓	$\text{RMSE} \downarrow$	AUSE RMSE↓	AUSE Absrel↓	d1 ↑	AbsRel ↓	$\text{RMSE}\downarrow$	AUSE RMSE↓	AUSE Absrel↓	d1 ↑	AbsRel↓	$\text{RMSE} \downarrow$	AUSE RMSE↓	AUSE Absrel↓	d1 ↑	AbsRel↓	$\text{RMSE} \downarrow$	AUSE RMSE↓	AUSE Absrel↓	d1 ↑	AbsRel↓	RMSE↓	AUSE RMSE↓	AUSE Absrel↓	d1 ↑	AbsRel↓	RMSE↓	AUSE RMSE↓	AUSE Absrel↓	d1 ↑	AbsRel↓	$\text{RMSE} \downarrow$	AUSE RMSE↓	AUSE Absrel↓
Baseline	0.922	0.114	3.357	-	2	0.786	0.147	5.005	-		0.632	0.207	6.989	-	-	0.951	0.090	3.646	-	-	0.896	0.125	3.616	-	-	0.713	2.637	4.764	-	-	0.555	0.459	6.916	-	-
Deep Ensembles [0.929	0.111	3.199	0.291	0.060	0.767	0.156	4.892	0.740	0.105	0.566	0.243	7.498	1.182	0.153	0.955	0.083	3.479	0.336	0.055	0.903	0.114	3.447	0.427	0.074	0.709	1.810	4.707	0.692	0.129	0.521	0.331	7.411	1.072	0.151
MC Dropout [0.919	0.119	3.209	0.634	0.061	0.798	0.151	4.580	1.063	0.098	0.657	0.207	6.278	1.382	0.128	0.948	0.092	3.407	0.786	0.058	0.893	0.145	3.432	0.724	0.080	0.744	3.925	4.364	0.927	0.206	0.610	0.545	6.176	1.245	0.314
Single-PU [💌]	0.905	0.132	3.230	0.313	0.081	0.773	0.159	4.865	0.789	0.112	0.571	0.248	7.680	1.740	0.171	0.946	0.105	3.546	0.358	0.079	0.888	0.132	3.463	0.447	0.095	0.714	4.349	4.716	0.744	0.482	0.529	0.351	7.627	1.347	0.156
SLURP [0.922	0.114	3.357	0.467	0.048	0.786	0.147	5.005	1.167	0.090	0.632	0.207	6.989	1.707	0.128	0.951	0.090	3.646	0.525	0.033	0.896	0.125	3.616	0.721	0.068	0.713	2.637	4.764	1.072	0.212	0.555	0.459	6.916	1.564	0.151

Object detection:

Evaluation data	normal set			low adv.	low adv. without OOD set			high adv. without OOD set			OOD set			v. with OC	DD set	high a	high adv. with OOD set		
	mAP↑	AP50 ↑	PDQ ↑	mAP↑	AP50↑	$PDQ \uparrow$	mAP↑	AP50 ↑	PDQ ↑	mAP↑	AP50↑	PDQ ↑	mAP↑	AP50↑	PDQ ↑	mAP↑	AP50 ↑	PDQ ↑	
Faster R-CNN (ResNet101)	39.91%	54.91%	16.88%	25.00%	36.89%	8.61	13.97%	22.01%	0.041	35.85%	48.9%	14.33%	24.73%	35.70%	8.49%	12.41%	19.66%	3.86%	
Faster R-CNN (ResNet50)	38.43%	53.13%	15.02%	25.19%	37.38%	8.18%	13.29%	21.53%	0.0389%	34.52%	47.63%	12.96%	23.93%	34.51%	7.95%	12.11%	19.46%	3.64%	
Gaussian YOLOV3	20.81%	32.84%	2.22%	8.79%	16.40%	0.57%	3.28%	6.30%	0.22%	17.44%	28.16%	1.52%	10.80%	18.71%	0.64%	3.21%	6.15%	0.26%	

ngel Tena⁴, Rémi Kazmierczak¹, Severine Dubuisson⁵, ², David Filliat¹

versity ³valeo.ai ⁴Anyverse ⁵Aix Marseille University

un

Overview of the different datasets for uncertainty on autonomous driving:

of the light coming from es ozone, humidity etc.

ling speed and size of according to observed

pproach for the ering effects are

Dataset	Adversarial annotations	Fog	Night	Rain	Snow	Classes	Out of distribution	Depth	Object detection 2D/3D	Instance segmentation
Foggy Driving[101	\checkmark	-	-	-	19	-	-	\checkmark	-
Foggy Zurich [40	\checkmark	-	-	-	19	-	-	-	-
Nighttime Driving [50	-	\checkmark	-	-	19	-	-	-	-
Dark Zurich [12]	201	-	\checkmark	-	-	19	-	-	-	-
Raincouver [326	-	\checkmark	\checkmark	-	3	-	-	-	-
WildDash 🗳	226	\checkmark	\checkmark	\checkmark	\checkmark	19	-	-	-	-
BDD100K [🔼]	1346	\checkmark	\checkmark	\checkmark	\checkmark	19	-	-	-	-
ACDC [4006	\checkmark	\checkmark	\checkmark	\checkmark	19	-	\checkmark	\checkmark	-
Virtual KITTI 2 [21260	\checkmark	-	\checkmark	-	14	-	\checkmark	\checkmark	\checkmark
Fishyscapes [1]	373	-	-	-	-	19+2	\checkmark	-	-	-
LostAndFound [11]	1203	-	-	-	-	19+9	\checkmark	-	-	-
RoadObstacle21 [1]	327	-	\checkmark	-	\checkmark	19+1	\checkmark	-	-	-
RoadAnomaly21 [1]	100	-	-	-	\checkmark	19+1	\checkmark	-	-	-
Streethazard [6625	-	-	-	-	13+250	\checkmark	-	-	-
BDD anomaly [810	\checkmark	\checkmark	\checkmark	\checkmark	17+2	\checkmark	-	-	-
MUAD	10413	\checkmark	\checkmark	\checkmark	\checkmark	16+9	\checkmark	\checkmark	\checkmark	\checkmark

et			OOD set				low a	dv. with OO	D set			high a	dv. with OO	D set
	mIoU↑	$\text{ECE}\downarrow$	AUROC \uparrow	AUPR \uparrow	$FPR \downarrow$	mIoU↑	$\text{ECE}\downarrow$	AUROC \uparrow	AUPR \uparrow	$FPR \downarrow$	mIoU ↑	$\text{ECE} \downarrow$	AUROC \uparrow	AUP
	57.32%	0.0607	0.8624	0.2604	0.3943	31.84%	0.3078	0.6349	0.1185	0.6746	18.94%	0.4356	0.6023	0.10
	58.91 %	0.06465	0.8578	0.21576	0.4106	40.22%	0.1544	0.7448	0.1361	0.5876	27.51 %	0.6564	0.6564	0.10
	55.62%	0.0645	0.8439	0.2225	0.4575	33.38%	0.1329	0.7506	0.1545	0.5807	20.77%	0.3809	0.6864	0.11
	58.81%	0.0574	0.8811	0.2535	0.3435	39.64%	0.1172	0.7698	0.1557	0.5498	26.52%	0.1771	0.6965	0.12
	58.29%	0.0588	0.871	0.2802	0.3760	34.91%	0.2447	0.6543	0.1212	0.6425	20.19%	0.4227	0.6101	0.11
	59.50%	0.05928	0.8843	0.2611	0.3342	40.00 %	0.1400	0.6933	0.1198	0.6290	25.89 %	0.3305	0.5939	0.09

Semantic segmentation simple domain adaptation from MUAD to Cityscapes

Training set	mIoU↑
Baseline trained on Cityscapes	76.84%
Baseline trained on MUAD	16.71%
Baseline trained on MUAD with histogram eq.	32.12%
Baseline trained on GTA [32.85%
Baseline trained on SYNTHIA [29.45%

Number of annotated pixels per class in MUAD: 10⁹ sky human vehicle constructionnature objects flat Classes

$\mathsf{PR}\uparrow \mathsf{FPR}\downarrow$ 073 0.7547 1 0.7011 .85 0.6751 **37 0.6633** 0.7212 959 0.7287

Monocular depth estimation simple domain adaptation from MUAD to KITTI eigen-split

					KITTI			
Training set	d1↑	d2↑	d3↑	Abs Rel↓	Sq Rel↓	RMSE↓	RMSEng	SILog↓
KITTI 🗖	0.975	0.997	0.999	0.052	0.148	2.072	0.078	6.9859
Virtual KITTI 2 [0.835	0.957	0.989	0.129	0.706	4.039	0.177	15.534
MUAD	0.731	0.927	0.983	0.187	1.059	4.754	0.227	18.581