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Abstract

Semi-supervised object detection (SSOD) aims to boost detection performance by
leveraging extra unlabeled data. The teacher-student framework has been shown to be
promising for SSOD, in which a teacher network generates pseudo-labels for unlabeled
data to assist the training of a student network. Since the pseudo-labels are noisy, fil-
tering the pseudo-labels is crucial to exploit the potential of such framework. Unlike
existing suboptimal methods, we propose a two-step pseudo-label filtering for the classi-
fication and regression heads in a teacher-student framework. For the classification head,
OCL (Object-wise Contrastive Learning) regularizes the object representation learning
that utilizes unlabeled data to improve pseudo-label filtering by enhancing the discrimi-
nativeness of the classification score. This is designed to pull together objects in the same
class and push away objects from different classes. For the regression head, we further
propose RUPL (Regression-Uncertainty-guided Pseudo-Labeling) to learn the aleatoric
uncertainty of object localization for label filtering. By jointly filtering the pseudo-labels
for the classification and regression heads, the student network receives better guidance
from the teacher network for object detection task. Experimental results on Pascal VOC
and MS-COCO datasets demonstrate the superiority of our proposed method with com-

petitive performance compared to existing methods.

1 Introduction

Semi-Supervised Object Detection (SSOD) leverages both labeled data and extra unlabeled
data to learn object detectors. Previous works [1, 2, 8, 10, 16, 18, 22, 24, 27, 29, 33, 34, 36,
38, 39, 40, 41] have proposed various methods to exploit the unlabeled data. Among them,
one promising solution is to generate pseudo-labels for the unlabeled data by a pre-trained
model and then use them as labeled data along with the original labeled data to train the target
object detector. By applying different augmentations to an image, the consistency between
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Figure 1: The correlation between the regression uncertainties and the ground-truth IoUs of
bounding boxes. The ground-truth IoU represents the localization quality. Low uncertainty
suggests accurate localization of the bounding box.

the labels of them can serve as extra knowledge to train the target model. The consistency
can be exploited by using the generated pseudo-labels from weakly augmented images to
regularize the model’s predictions of strongly augmented images [27]. A teacher-student
framework [30] further learns the pseudo-labels by mutual learning teacher and student net-
works, where the teacher network generates pseudo-labels of unlabeled data to assist the
training of the student network, and the student network transfers the updated knowledge to
the weights of the teacher network.

To train the detector with the pseudo-labels, the quality of the generated pseudo-labels
is critical to the detection performance. For the detection task, the pseudo-labels are de-
fined for each region of interest and include the class labels and bounding boxes. Hence,
the qualities of both the classification and the localization are important to filter out unreli-
able pseudo-labels. The classification score is widely adopted to select region proposals with
confidence higher than a pre-defined threshold. The selected labeled regions are used to train
both the classification and regression heads in the detector. There are some heuristic designs
to measure the localization quality of the generated pseudo-labels, e.g., prediction consis-
tency [36], interval classification uncertainty [18]. While these techniques together with the
classification score are effective, we argue the existing classification scores and localization
optimization is suboptimal, since the lack of labeled data makes classification score less dis-
criminative, and the measurement of pseudo labels’ localization quality is less investigated.
The classification scores mainly distill knowledge from labeled data to evaluate the quality
of unlabeled data, which under exploits the unlabeled data. To tackle these challenges, we
extend existing methods in self-supervised representation learning to SSOD task. Instead
of using heuristic designs, we further adopt uncertainty to measure the localization quality,
which turns out to be an effective indicator as shown in Fig. 1.

In this paper, we propose an effective method to generate pseudo-labels for semi-supervis-
ed object detection. Specifically, we present a two-step pseudo-label filtering for the clas-
sification and regression heads in a teacher-student framework. For the classification head,
the classification score is used to filter out unreliable pseudo class labels. We aim to im-
prove the classification filtering through enhancing the capacity of the classification branch
by taking into consideration of the unlabeled data. We introduce an object-wise contrastive
learning (OCL) loss for the feature extractor in the classification head. This contrastive loss
is defined on object regions with semantic similar regions defined as positive pairs. This
loss pull together object representations of the positive pairs and push away representations
of negative pairs. For the regression head, we propose to use uncertainty as the indicator
to filter out pseudo-labels with regression-uncertainty-guided pseudo-labeling (RUPL). We
design an uncertainty head in parallel to the classification and regression heads to learn the
aleatoric uncertainty for bounding boxes. We only select pseudo-labels with low uncertain-
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ties to train our models. We combine OCL and RUPL in our framework to improve the qual-
ity of pseudo-labels for the detection task. To demonstrate effectiveness of our framework,
we perform the experiments on standard object detection benchmark: PASCAL VOC [6]
and MS-COCO [19]. We experimentally show that OCL and RUPL are complementary and
have a synergetic effect. Our framework also achieves competitive performance compared
to existing methods, without geometry or improved augmentations.

Our contributions are summarized as follows: (1) We propose an integrated framework
that addresses filtering pseudo-labels for classification and regression in SSOD. (2) We pro-
pose OCL that improves the discriminativeness of the classification score to enhance the
filtering the pseudo-labels for classification. (3) We propose RUPL that models bounding
box localization quality via uncertainty and removes misplaced pseudo-labels for regression.
(4) We experimentally show the synergetic effect between OCL and RUPL and demonstrate
the effectiveness of the overall framework on standard object detection benchmarks.

2 Related Work

Semi-Supervised Object Detection. SSOD methods can be divided into two categories:
pseudo-labeling [27, 34] methods and consistency regularization [10, 11, 28] methods. Pseudo-
labeling methods regularize the model using predictions generated from the pre-trained
model utilizing unlabeled data. Recent pseudo-labeling-based works [22, 29, 38, 41] adopt
the teacher-student framework [30]. In this framework, a teacher’s predictions guide a stu-
dent and the student weight parameters evolve the teacher, which leads to remarkable perfor-
mance improvement. Since pseudo-labels may have noise that degrades the model perfor-
mance, classification scores are used to eliminate unreliable ones. To improve the pseudo-
label quality, IT [41] and ISTM [38] propose ensemble-based method, and ACRST [39]
adopts a multi-label classifier at the image level to use high level information. Furthermore,
to eliminate misaligned pseudo-labels, 3DIoUMatch [32] adopts IoU prediction [12] in semi-
supervised 3D object detection, and ST [36] utilizes regression prediction consistency, and
RPL [18] reformulates regression as classification. Concurrent work [23] adopts uncertainty
estimation and guides the student if pseudo-labels have lower uncertainty than the student’s
predictions. In contrast to existing works, we propose an integrated framework that im-
proves pseudo-label quality by improving the discriminativeness of object-wise features and
modeling regression uncertainty.

Contrastive Learning. Contrastive Learning (CL) decreases the distance between positive
paired samples and increases the distance between negative ones. Representation learning [3,
4,317 has succeeded through self-supervised CL that treats different views of the same image
as a positive pair. By extension, SupCon [15] proposes supervised CL that makes a positive
pair for images from the same class. Recent works [13, 37] apply CL that makes positive
pairs if unlabeled images or points have the same predicted class. In SSOD, PL [28] adopts
CL that treats overlapped region proposals as positive pairs and otherwise as negative pairs
even if they have the same category, which hinders the representation learning. By contrast,
in SSOD, we first introduce CL that leverages predictions to identify object regions from
unlabeled images and makes positive pairs for objects from the same class to improve the
discriminativeness.

Uncertainty Estimation. A seminal work [14] captures epistemic and aleatoric uncer-
tainties in the deep learning frameworks of computer vision. Recent works [5, 9] employ
aleatoric uncertainty in bounding box regression to identify well-localized bounding boxes.
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Figure 2: The overview of our proposed framework.

UPS [26] applies aleatoric uncertainty in semi-supervised image classification to remove
noisy pseudo-labels. In contrast, our work adopts aleatoric uncertainty in SSOD to model
the localization quality of pseudo-labels and select reliable pseudo-labels for regression.

3 Proposed Method

We first define the problem, then show the overall framework in Sec. 3.2. Finally we detail
the proposed OCL in Sec. 3.3 and RUPL in Sec. 3.4.

3.1 Problem Definition

Compared with supervised object detection, semi-supervised object detection aims to uti-
lize additional unlabeled images to improve the object detection accuracy. In the teacher-
student framework, our task is to generate pseudo-labels from unlabeled data using the
teacher network for to train the student network. Specifically, there are a labeled dataset
(X', 7"} = {(x},y)}¥, and an unlabeled dataset X* = {x*}*,, where N, N,, ', y' and x*
denote the size of labeled dataset, the size of unlabeled dataset, labeled images, ground-truth
labels, and unlabeled images, respectively. The ground-truth label y* consists of each ob-
ject’s class category ¢! and bounding box b. The goal of pseudo-label filtering is to generate
{X2,,Y?} and {X7,,, Y7, } from X" to train the classification and regression heads in the
detection model, respectively.

3.2 Framework Overview

To utilize the unlabeled data in semi-supervised object detection, we propose object-wise
contrastive learning (OCL) and regression-uncertainty-guided pseudo-labeling (RUPL) to
select reliable pseudo-labels for the training of classification and regression, respectively.
We apply our proposed modules to a simple baseline [22]. This baseline utilizes the teacher-
student framework and pseudo-labeling, which are commonly adopted in SSOD frameworks.
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Fig. 2 shows our proposed framework with OCL and RUPL.

Training stage. The teacher-student framework has a student network and a teacher network.
At the pre-training stage, the student network is trained with a supervised loss (Eq. 1) using
the labeled dataset {X', ¥’} .

‘Csup = Erpn,cls + £rpn,reg + ‘Cmi,cls + £mi,reg (1)

The supervised loss consists of classification and regression losses for each RPN and ROI.
Specifically, we follow [22] to use cross-entropy loss for L, s, smooth L1 loss [7] for
Ly pn,reg, Tocal loss [21] for L,y . We adopt uncertainty-aware regression loss [14] for
Lyoireg- At the mutual learning stage, the teacher network is initialized by the pre-trained
student network. Both labeled and unlabeled images are used at this stage. The teacher
network generates the pseudo-labels of unlabeled images to train the student network. The
overall loss of the student network is

L= ['sup =+ ALmsupL"unsup =+ A’()C[L"OL‘lv 2

where L,y and L, denote the unsupervised loss and object-wise contrastive loss, re-
spectively. The unsupervised and object-wise contrastive losses are computed on unlabeled
images. Our unsupervised loss consists of similar loss terms as the supervised loss. Here,
Lypn,cis and L,,; ;s are computed on the set of pseudo-labels for classification {X Py f 1)

3
Lipnreg and Lyy; ree are computed on the set of pseudo-labels for regression {Xfil;7 Y feg}.
And we use smoothL1 loss for £,,; .. The teacher network is iteratively updated by the
student network’s weight parameters via exponential moving average [22].
Inference Stage. The teacher network is used at the inference stage to detect objects for a
given image. With the uncertainty branch, our model also predicts the aleatoric uncertainty

of a bounding box, which can be interpreted as the confidence of the boundary location.

3.3 Object-wise Contrastive Learning

In the classification head, we propose the object-wise contrastive learning (OCL) to regular-
ize the feature representation of ROI objects. We visualize the details of OCL and show an
illustration in Fig. 3.

To use the contrastive loss, we construct positive and negative pairs of ROI objects within
each batch during training. We first predict the class category c”, classification score p?,
and bounding box b for each ROI object detected by the teacher network taking as input
the weakly augmented unlabeled images A (x"). We denote the number of detected ROI
objects in a batch as N,. We then input two strong augmented images .4; (x*) and A, (x") to
the teacher and student networks to get the ROI features z' and z* using predicted bounding
boxes bP, respectively. Then, z' and z* are projected to the low-dimensional feature space
and normalized with L2-normalization to generate 2’ and 2°, respectively.

As the predicted class is noisy, we take the classification score into consideration to
define ROI object pairs, as shown in Eq. 3. A pair is positive if the n-th object feature ) and
the m-th object feature 2!, belong to the same ROIL. We further measure the similarity if the
two features are not from the same ROI but have the same class with high confidence.

1 ifn=m,
Wnm = Pﬁ 'Pz[:z ifn 7& m and Cg = 051 and PZ > Teon and an > Teont 3)
0 otherwise.
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Figure 3: Left: Training details of OCL. Right: Intuitive illustration of the OCL.

T,ons 1s a classification score threshold for contrastive learning. Our contrastive loss is based
on the supervised contrastive loss [15], and is formulated as

1 N No exp(2 -2/t
Leons = Z Z Wnm '1Og ; ( 2 m/ ) “4)
0 n= m 1 ]l(wnm>0) Z[ ]]- (I#£n) exp(z,, ZI/T)

where 7 is the temperature parameter. 1(-) equals to 1 if the condition is true, otherwise zero.
Note that, for the n-th ROI object, we normalize the loss by the number of positive pairs
rather than the similarity. This aims to reduce the influence of mis-classified predictions. We
adopt the symmetrized loss [4] to compute our object-wise contrastive loss as

1
Eocl = 7(Lwnz + ‘Cwm) &)

2

where L., is the same loss as L., but with the augmentations for the teacher and stu-
dent networks swapped. Through the OCL (Eq. 5), intra-class objects are encouraged to
have similar feature representations, and inter-class objects are encouraged to have different
feature representations. As a result, we can select pseudo-labels for classification task as

(X0, Y0 = {(x y0)|pl. > Tu}i, (6)

where y is the pseudo -labels for the i-th image and consists of the class category and bound-
ing box for objects, p” is the classification score for the corresponding object in the i-th
image, and T, is a predeﬁned threshold.

3.4 Regression-Uncertainty-guided Pseudo-Labeling

We propose regression-uncertainty-guided pseudo-labeling (RUPL) to utilize regression un-
certainty to filter out unreliable bounding boxes. Following [9], we add an uncertainty head
in parallel to classification and regression heads to predict regression uncertainty c. We
use the uncertainty-aware regression loss [14] as the the student network’s bounding box
regression loss !,

smoothL (f,t)
EroiJeg = T + Aunc lOg(Gz), @)

I'This loss is only applied to labeled images.
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where 7 and ¢ denote the predicted bounding box offset and ground truth bounding box offset.
Aune is a hyperparameter to control the effect of the uncertainty term. During training, we
apply this loss to each of the four boundaries of a bounding box. During inference, we use
the average of these four uncertainties (denoted as &) as the regression uncertainty of the
bounding box. We can then derive the selection of pseudo labels for regression as

{Xre;,a reg} {( ,ylp)|pfa > Teis and 6,'{7. < Treg}f'\illv (3)

where y” is the pseudo -labels for the i-th image and consists of the class category and bound-
ing box for objects, pl and &7 are the classification score and regression uncertainty for the
corresponding object in the i- th i image, and T T are predefined thresholds. By learn-
ing the regression uncertainty, we provide an alternative way to capture the reliability of
pseudo-labels without additional forwarding or reformulation.

4 Experiments

4.1 Experimental Settings

Following previous works [22], we evaluate our method on Pascal VOC [6] and MS-COCO [19].
We conduct experiments using different settings. (1) VOC [22]: VOCO07-trainval and VOC12-
trainval are used as labeled and unlabeled datasets, respectively. We also show results us-
ing COCO20cls [22] as an additional unlabeled dataset. VOCO7-test is used to evaluate.
(2) COCO-standard [22]: We randomly select 1%/5%/10% samples from COCO2017 train
dataset as our labeled datasets, and the rest of them as unlabeled datasets. COC0O2017 valida-
tion set is used to evaluate. (3) COCO-35k [34]: We use a subset of COCO2014 validation
set as a labeled dataset and COCO2014 training set as an unlabeled dataset. COCO2014
minival is used to evaluate. (4) COCO-additional [22]: We use COC0O2017 train dataset and
COCO2017 unlabeled dataset as labeled and unlabeled datasets, respectively. COCO2017
validation set is used to evaluate.

4.2 Implementation details

Following [22, 27], our object detector is Faster-RCNN [25] with ResNet-50 backbone and
FPN [20]. For VOC and VOC with COCO20cls settings, we train our model by 60k and
90k iterations, respectively, including 12k iterations for pre-training. For the coco-standard
setting, we pre-train 5k/20k/40k iterations for 1%/5%/10% of COCO-standard and persist
the training until 180k iterations. For the COCO-35k and COCO-additional settings, models
are pre-trained/trained for 12k/180k and 90k/360k iterations, respectively. More training
details, including augmentation strategies and model architecture, are in the supplementary.

4.3 Results

VOC. Experimental results on Pascal VOC [6] are shown in Tab. 1. We add our pro-
posed OCL and RUPL to UBT [22] without additional augmentation strategies. When using
VOC12-trainval as unlabeled data, our model outperforms UBT [22] by 3.35 mAP and 0.89
mAP on APsg.95 and APsq, respectively. When using COCO20cls [22] as additional unla-
beled data, our model has larger improvements and outperforms UBT [22] by 3.54 mAP
and 1.25 mAP on APsg.95 and APs, respectively. This shows that our proposed method can


Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Everingham, Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Wang, Li, Guo, Fang, and Wang} 2021{}

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Sohn, Zhang, Li, Zhang, Lee, and Pfister} 2020

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Lin, Doll{á}r, Girshick, He, Hariharan, and Belongie} 2017

Citation
Citation
{Everingham, Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021


8 CHOI ET AL.: SEMI-SUPERVISED OBJECT DETECTION WITH OCL AND RUPL

Method | Conference | Unlabeled | APsp0s  APsy || Unlabeled | APsp95  APsp
Supervised'[22] | - | None | 4213 7263 || None | 4213 7263
STAC[27] - 4464 7745 4601 79.08
UBT[22] ICLR2021 48.69 7737 5034 78.82
IT [41] CVPR2021 5000 79.20 50.80  79.90
HT[29] CVPR2021 53.04  80.94 5441 81.29
CN[33] NIPS2021 49.3 80.6 50.2 81.4
ST[17] ICCV2021 - 80.32 - -
ACRST[39] AAAI2022 5430 8111 || VOCI2-trainval - -
RPL[18] AAAI2022 | VOCI2-trainval | 54.6 79.0 + 56.1 79.6
DDT[40] AAAI2022 54.7 82.4 COCO20cls 55.9 825
MUM'[16] CVPR2022 5022 78.94 5231 8045
MA-GCP [17] | CVPR2022 - 81.72 - -
SED [8] CVPR2022 - 80.60 - -
UBTv2* [23] | CVPR2022 56.87 8129 58.08  82.04
Ours' - 5204 78.29 53.88  80.07
Ours? 57.34 8218 5899 8298

Table 1: Experimental results on Pascal VOC dataset [6]. Our method can outperform ex-
isting works. T and I denote results that are evaluated by the COCOevaluator and VOCe-
valuator in Detectron2 [35], respectively. Unmarked works are not implemented on Detec-
tron2 [35], or are hard to check through the paper or released code. We give more information
about the evaluator in our supplementary Sec. 3.

better benefit from unlabeled data. Moreover, our method outperforms other existing mod-
els [8, 16, 17, 18, 23, 27, 29, 33, 39, 40, 41] on both experiment settings, which shows the
superiority of our method.

COCO-standard COCO-additional

Method | 1% | 5% | 10% Method | APsoss
COCO-35k sed [22
Supervised [22] | 9.05 | 1847 | 23.86 SUE;Z‘CSC[%]Z'] ‘3“9)%(1)
Method | APspos STAC [27] 13.97 | 2438 | 28.64 PL [28] 3840
S T 313 UBT [22] 2075 | 2827 | 3150 UBT 1 Phip
upervised [34] : IT [41] 1805 | 2675 | 304 ‘
DD [34] 33.1 IT [41] 4020
RPL [18] 1821 | 2778 | 31.67
MP [34] 348 p RPL [18] 43.30
N [33] 1841 | 28.96 | 3243
MP+DD[34] | 352 ' CN[33] 43.20
) ST’ [36] 2046 | 3074 | 34.04 !
UBT 3636 obT ST' [36] 4450
40] 1862 | 2924 | 3280 DT 0] o
Ours | 3713 MUM(16] | 2188 | 2852 | 3187 oM L) o
o .
UBTV2' [23] | 25.40 | 31.85 | 35.08 UBTV2 23] | 4475
Ours | 21.63 | 3066 | 33.53 o oL

Table 2: Experimental results on MS-COCO. We report the APsq.95 of different methods.
denotes using extra augmentation such as a scale-jittering augmentation strategy to improve
the accuracy, while we do not use. It significantly improves the mAP by about 1.37AP (We
refer the reader to Tab. 6 of the supplementary of UBTv2 [23]). & denotes our implemented
result based on the official repository.

MS-COCO. We also conduct experiments on MS-COCO [19] to verify the effectiveness
of our method, shown in Tab. 2. Comparing with UBT [22], our model outperform it by
0.88/2.39/2.03 mAP, 0.77 mAP, and 0.59 mAP on COCO-standard ,COCO-35k, and COCO-
additional. respectively. Moreover, our method achieves comparable results on COCO-
standard, COCO-35k, and COCO-additional compared to other state-of-the-arts. These re-
sults consistently support the effectiveness of our method.


Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Sohn, Zhang, Li, Zhang, Lee, and Pfister} 2020

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Zhou, Yu, Wang, Qian, and Li} 2021

Citation
Citation
{Tang, Chen, Luo, and Zhang} 2021{}

Citation
Citation
{Wang, Li, Guo, and Wang} 2021{}

Citation
Citation
{Li, Yuan, and Li} 2022{}

Citation
Citation
{Zhang, Pan, and Wang} 2022

Citation
Citation
{Li, Wu, Shrivastava, and Davis} 2022{}

Citation
Citation
{Zheng, Chen, Cai, Ye, and Tan} 2022

Citation
Citation
{Kim, Jang, Seo, Jeong, Na, and Kwak} 2022

Citation
Citation
{Li, Yuan, and Li} 2022{}

Citation
Citation
{Guo, Mu, Chen, Wang, Yu, and Luo} 2022

Citation
Citation
{Liu, Ma, and Kira} 2022

Citation
Citation
{Everingham, Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Wu, Kirillov, Massa, Lo, and Girshick} 2019

Citation
Citation
{Wu, Kirillov, Massa, Lo, and Girshick} 2019

Citation
Citation
{Guo, Mu, Chen, Wang, Yu, and Luo} 2022

Citation
Citation
{Kim, Jang, Seo, Jeong, Na, and Kwak} 2022

Citation
Citation
{Li, Yuan, and Li} 2022{}

Citation
Citation
{Li, Wu, Shrivastava, and Davis} 2022{}

Citation
Citation
{Liu, Ma, and Kira} 2022

Citation
Citation
{Sohn, Zhang, Li, Zhang, Lee, and Pfister} 2020

Citation
Citation
{Tang, Chen, Luo, and Zhang} 2021{}

Citation
Citation
{Wang, Li, Guo, and Wang} 2021{}

Citation
Citation
{Zhang, Pan, and Wang} 2022

Citation
Citation
{Zheng, Chen, Cai, Ye, and Tan} 2022

Citation
Citation
{Zhou, Yu, Wang, Qian, and Li} 2021

Citation
Citation
{Wang, Li, Guo, Fang, and Wang} 2021{}

Citation
Citation
{Wang, Li, Guo, Fang, and Wang} 2021{}

Citation
Citation
{Wang, Li, Guo, Fang, and Wang} 2021{}

Citation
Citation
{Wang, Li, Guo, Fang, and Wang} 2021{}

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Sohn, Zhang, Li, Zhang, Lee, and Pfister} 2020

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Zhou, Yu, Wang, Qian, and Li} 2021

Citation
Citation
{Li, Wu, Shrivastava, and Davis} 2022{}

Citation
Citation
{Wang, Li, Guo, and Wang} 2021{}

Citation
Citation
{Xu, Zhang, Hu, Wang, Wang, Wei, Bai, and Liu} 2021

Citation
Citation
{Zheng, Chen, Cai, Ye, and Tan} 2022

Citation
Citation
{Kim, Jang, Seo, Jeong, Na, and Kwak} 2022

Citation
Citation
{Liu, Ma, and Kira} 2022

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Sohn, Zhang, Li, Zhang, Lee, and Pfister} 2020

Citation
Citation
{Tang, Ramaiah, Wang, Xu, and Xiong} 2021{}

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021

Citation
Citation
{Zhou, Yu, Wang, Qian, and Li} 2021

Citation
Citation
{Li, Wu, Shrivastava, and Davis} 2022{}

Citation
Citation
{Wang, Li, Guo, and Wang} 2021{}

Citation
Citation
{Xu, Zhang, Hu, Wang, Wang, Wei, Bai, and Liu} 2021

Citation
Citation
{Zheng, Chen, Cai, Ye, and Tan} 2022

Citation
Citation
{Kim, Jang, Seo, Jeong, Na, and Kwak} 2022

Citation
Citation
{Liu, Ma, and Kira} 2022

Citation
Citation
{Liu, Ma, and Kira} 2022

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

Citation
Citation
{Liu, Ma, He, Kuo, Chen, Zhang, Wu, Kira, and Vajda} 2021


CHOI ET AL.: SEMI-SUPERVISED OBJECT DETECTION WITH OCL AND RUPL 9

L

—— (1) w/ OSSCL, w/ RuPL
(2) wio OSSCL, w/ RuPL

—— (3) w/ 0SSCL, wjo RuPL

—— (4) w/o OSSCL, wjo RuPL

MAP(%)

10k 15k 20k 25k 30k 35k 40k 45k
Training iterations

Figure 4: mAP (APsg.05) curves during
training of the experiments in Tab 3.

Method | APsoos  APsg  APys

w/o CL 18.05 34.45 17.09
Self-sup CL 18.24 3489  17.22
OCL (Ours) 18.34 35.21 17.16

Table 4: Ablation studies of OCL. CL de-
notes contrastive learning. A pair in Self-
sup CL is positive if and only if they are the
same instance(i = j in Eq. 3). We exclude
RUPL to facilitate the comparison.

OCL  RUPL | APspos  APso AP75

(1) ' v 19.42 3465 19.36
2) v 18.95 33.82 19.07
3) v 18.34 35.21 17.16
4) 18.05 34.45 17.09

Table 3: Ablation studies of different mod-
ules.

Method | APsg.95 APs(y AP75

Box jittering [36] 18.15 34.84 17.37

Predicted IoU [32] 18.85 34.76 18.26

Aleatoric uncertainty [14] (Ours) 18.95 33.81 19.06
Table 5: Different methods capturing
the localization quality of pseudo-labels.
Aleatoric uncertainty [14] (Ours) is the
best. We exclude OCL to facilitate com-

parison.

4.4 Ablation studies

We conduct ablation studies to investigate the effectiveness of our model using 1% COCO-
standard. Because of the limitation of computing resources, all experiments in this section
are conducted with batch size 12/12 (labeled/unlabeled) and training iteration 45k, as in [16].
Effectiveness of proposed modules. We remove each proposed module from our framework
and report results in Tab. 3. Comparing (3) to (4), we can see introducingOCL can improve
both AP5y and AP75. This result demonstrates that the model benefits from more accurate
pseudo-labels w.r.t classification. Comparing (2) to (4), we can see introducing RUPL can
improve AP7s but decrease APsg. We assume the reason is that RUPL makes the model focus
more on regression than classification during training. Comparing (1) to (2-4), we can see
the accuracy of (1) is significantly higher than that of (2-4), which shows applying both OCL
and RUPL can lead to the best accuracy. We argue that the model can generate more precise
pseudo-labels with more discriminative classification scores and the introduced localization
uncertainties, which leads to the improvement of accuracy. We also show the mAP curves
of different experiments during training in Fig. 4, which further supports the effectiveness of
our proposed modules. We emphasize that the proposed OCL and RUPL can complement
each other and synergistically improve the model performance.

Ablation studies of OCL. To verify the effectiveness of the class information of our OCL,
we show the results of three models in Tab. 4, i.e., without, self-supervised, and, object-
wise semi-supervised contrastive learning (our OCL). In Tab. 4, self-sup CL improves the
model performance compared to w/o CL and OCL further improves the performance since it
helps the model to learn more discriminative feature representation for objects from different
classes. This supports the effectiveness of our OCL.

Different localization quality measurements. In Tab. 5, we compare different localization
quality measurements. Specifically, we compare box jittering [36], predicted IoU [32], and
aleatoric uncertainty [14] in our RUPL. We use grid-search to find the best thresholds of box
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jittering [36] and predicted IoU [32] to filter pseudo-labels, and set them as 0.01 and 0.8,
respectively. The model with aleatoric uncertainty [14] achieves the highest performance on
the APs.95.

Different Regression Thresholds of RUPL. In this section, we show experimental results
on how different thresholds of RUPL (7}, ) affect the detection accuracy. As shown in Tab. 6,
the model achieves the highest performance when we set the threshold as 0.5. The detection
accuracy decreases when we set a larger threshold or small threshold. With a larger threshold,
the selected samples become more diverse but unreliable. While with a smaller threshold,
the selected samples become more reliable but monotonous.

Threshold | APsp9s ~ APsg  APgs

0.3 19.18 34.53 19.13
0.4 19.37 34.49 19.28
0.5 19.42 34.65 19.36
0.6 19.26 3445  19.36
0.7 18.78 33.50 18.93

Table 6: Detection accuracy with different regression thresholds of RUPL.

5 Conclusion

In this paper, we propose a two-step pseudo-label filtering for SSOD. We deal with both the
classification and regression heads in the detection model. For the classification head, we
propose an object-wise contrastive learning loss to exploit the unlabeled data to enhance the
discriminativeness of classification score for pseudo label filtering. For the regression head,
we design an uncertainty branch to learn regression uncertainty to measure the localization
quality for bounding box filtering. We experimentally show that the two components create
a synergistic effect when integrated into the teacher-student framework. Our framework
achieves remarkable performance gain against our baseline on both PASCAL VOC and MS-
COCO without additional augmentation, and shows competitive results compared to other
state-of-the-arts.
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